Zhang D, Davidian M
Department of Statistics, North Carolina State University, Raleigh 27695-8203, USA.
Biometrics. 2001 Sep;57(3):795-802. doi: 10.1111/j.0006-341x.2001.00795.x.
Normality of random effects is a routine assumption for the linear mixed model, but it may be unrealistic, obscuring important features of among-individual variation. We relax this assumption by approximating the random effects density by the seminonparameteric (SNP) representation of Gallant and Nychka (1987, Econometrics 55, 363-390), which includes normality as a special case and provides flexibility in capturing a broad range of nonnormal behavior, controlled by a user-chosen tuning parameter. An advantage is that the marginal likelihood may be expressed in closed form, so inference may be carried out using standard optimization techniques. We demonstrate that standard information criteria may be used to choose the tuning parameter and detect departures from normality, and we illustrate the approach via simulation and using longitudinal data from the Framingham study.
随机效应的正态性是线性混合模型的常规假设,但这可能不切实际,会掩盖个体间变异的重要特征。我们通过用加兰特和尼奇卡(1987年,《计量经济学》55卷,363 - 390页)的半非参数(SNP)表示来近似随机效应密度,从而放宽这一假设。该表示将正态性作为一种特殊情况包含在内,并在捕捉由用户选择的调整参数控制的广泛非正态行为方面提供了灵活性。一个优点是边际似然可以以封闭形式表示,因此可以使用标准优化技术进行推断。我们证明了标准信息准则可用于选择调整参数并检测偏离正态性的情况,并且我们通过模拟和使用弗雷明汉姆研究的纵向数据来说明该方法。