Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
FEBS J. 2011 Jun;278(12):2090-104. doi: 10.1111/j.1742-4658.2011.08124.x. Epub 2011 May 18.
Although allostery plays a central role in driving protein-DNA interactions, the physical basis of such cooperative behavior remains poorly understood. In the present study, using isothermal titration calorimetry in conjunction with site-directed mutagenesis, we provide evidence that an intricate network of energetically-coupled residues within the basic regions of the Jun-Fos heterodimeric transcription factor accounts for its allosteric binding to DNA. Remarkably, energetic coupling is prevalent in residues that are both close in space, as well as residues distant in space, implicating the role of both short- and long-range cooperative interactions in driving the assembly of this key protein-DNA interaction. Unexpectedly, many of the energetically-coupled residues involved in orchestrating such a cooperative network of interactions are poorly conserved across other members of the basic zipper family, emphasizing the importance of basic residues in dictating the specificity of basic zipper-DNA interactions. Collectively, our thermodynamic analysis maps an allosteric communication channel driving a key protein-DNA interaction central to cellular functions in health and disease.
尽管变构作用在驱动蛋白质-DNA 相互作用中起着核心作用,但这种协同行为的物理基础仍知之甚少。在本研究中,我们使用等温滴定量热法结合定点突变,提供了证据表明,Jun-Fos 异源二聚体转录因子碱性区的能量偶联残基网络解释了其变构结合 DNA 的原因。值得注意的是,能量偶联在空间上接近的残基以及空间上距离较远的残基中都很普遍,这表明短程和长程协同相互作用在驱动这种关键蛋白质-DNA 相互作用的组装中都发挥了作用。出乎意料的是,在调控这种协同相互作用网络的能量偶联残基中,许多残基在碱性拉链家族的其他成员中保守性较差,这强调了碱性残基在决定碱性拉链-DNA 相互作用特异性中的重要性。总的来说,我们的热力学分析绘制了一个变构通讯通道,驱动着与健康和疾病细胞功能相关的关键蛋白质-DNA 相互作用。