FungalRV:用于人类真菌病原体的黏附素预测和免疫信息学门户。

FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens.

机构信息

G.N Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi 110007, India.

出版信息

BMC Genomics. 2011 Apr 15;12:192. doi: 10.1186/1471-2164-12-192.

Abstract

BACKGROUND

The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients.

DESCRIPTION

We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum and P. brasiliensis thus showing high sensitivity and specificity at a threshold of 0.511. In case of P. brasiliensis the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics analysis data on these proteins were organized for easy user interface analysis. A Web interface was developed for analysis by users. The predicted adhesin sequences were processed through 18 immunoinformatics algorithms and these data have been organized into MySQL backend. A user friendly interface has been developed for experimental researchers for retrieving information from the database.

CONCLUSION

FungalRV webserver facilitating the discovery process for novel human pathogenic fungal adhesin vaccine has been developed.

摘要

背景

人类病原真菌序列数据的出现为疫苗开发提供了生物信息学工具和资源,使处于危险中的患者受益。

描述

我们开发了一种真菌黏附素预测器和一个带有预测黏附素的免疫信息学数据库。通过文献搜索和域分析,我们准备了一个阳性数据集,其中包含来自人类真菌病原体白色念珠菌、光滑念珠菌、烟曲霉、粗球孢子菌、波氏粗球孢子菌、荚膜组织胞浆菌、皮炎芽生菌、卡氏肺孢子虫、耶氏肺孢子菌和巴西副球孢子菌的黏附蛋白序列。阴性数据集由极有可能在细胞内发挥作用的蛋白质组成。我们使用了 3945 种组成特性,包括氨基酸的单、二、三、多联体的频率和疏水性特性,作为蛋白质序列的支持向量机输入特征。通过对 588 个参数进行全面搜索,确定了最佳分类器,这些参数符合最佳 Matthews 相关系数和 3 倍交叉验证数据集变异系数最低的标准。“FungalRV 黏附素预测器”是基于三个模型构建的,这三个模型的平均 Matthews 相关系数在 0.89-0.90 之间,在 0.的阈值下,其在 3 倍交叉验证数据集之间的变异系数在 1.2%-2.74%之间。考虑到所有 8 种病原体(白色念珠菌、光滑念珠菌、烟曲霉、皮炎芽生菌、粗球孢子菌、波氏粗球孢子菌、荚膜组织胞浆菌和巴西副球孢子菌),我们获得了总体 MCC 值为 0.8702,表明在阈值为 0.511 时具有较高的灵敏度和特异性。在巴西副球孢子菌的情况下,该算法的灵敏度为 66.67%。从 8 种人类病原真菌的整个蛋白质组中预测了 307 种真菌黏附素和黏附素样蛋白。对这些蛋白质的免疫信息学分析数据进行了组织,以便于用户进行界面分析。为用户分析开发了一个 Web 界面。预测的黏附素序列通过 18 种免疫信息学算法进行处理,这些数据已组织到 MySQL 后端。为实验研究人员开发了一个用户友好的界面,以便从数据库中检索信息。

结论

已经开发了一个方便发现新型人类致病真菌黏附素疫苗的 FungalRV 网络服务器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13af/3224177/8dc0f6f99993/1471-2164-12-192-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索