Suppr超能文献

个性化医疗可以为 CB₁ 受体拮抗剂的安全使用铺平道路。

Personalized medicine can pave the way for the safe use of CB₁ receptor antagonists.

机构信息

Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary.

出版信息

Trends Pharmacol Sci. 2011 May;32(5):270-80. doi: 10.1016/j.tips.2011.02.013. Epub 2011 Apr 16.

Abstract

Antagonists of cannabinoid type-1 (CB₁) receptors have been explored as therapeutic agents for obesity and addiction. However, use of rimonabant (the first marketed CB₁ receptor antagonist) has been suspended due to its anxiogenic and depressive side effects (including suicide risk). Recent genomic studies provide evidence that variants of the CB₁ receptor gene (CNR1) alone or in combination with the gene of the serotonin transporter (SLC6A4) contribute to the development of anxiety and/or depression, suggesting that high-risk individuals could be identified through genetic testing. In this review, we argue that identification of high-risk individuals by a combination of genomic screening, previous risk phenotype, and environmental risk factors offers a promising method for the safe use of centrally acting CB₁ receptor antagonists. We summarize endocannabinoid signaling in pathways related to anxiety and depression, identify the serotonergic system as the most likely candidate to mediate the side effects of CB₁ receptor antagonists, and propose that poloymorphisms in CNR1, SLC6A4 and certain CYP 450 enzymes could help to identify individuals who may benefit from treatment with CB₁ receptor antagonist without psychiatric side effects.

摘要

大麻素类型 1 (CB₁) 受体拮抗剂已被探索用于治疗肥胖症和成瘾。然而,由于其焦虑和抑郁副作用(包括自杀风险),利莫那班(第一个上市的 CB₁ 受体拮抗剂)的使用已被暂停。最近的基因组研究提供了证据,表明 CB₁ 受体基因 (CNR1) 的变体单独或与 5-羟色胺转运体 (SLC6A4) 的基因结合,有助于焦虑和/或抑郁的发展,这表明可以通过基因测试识别高风险个体。在这篇综述中,我们认为通过基因组筛查、先前的风险表型和环境风险因素的组合来识别高风险个体,为安全使用中枢作用 CB₁ 受体拮抗剂提供了一种很有前途的方法。我们总结了与焦虑和抑郁相关的内源性大麻素信号通路,确定 5-羟色胺能系统最有可能介导 CB₁ 受体拮抗剂的副作用,并提出 CNR1、SLC6A4 和某些 CYP 450 酶的多态性可能有助于识别可能受益于 CB₁ 受体拮抗剂治疗而无精神副作用的个体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验