Suppr超能文献

基于计算建模的声带结构和振动运动学与两种基于呼吸声的声学测量的关系。

Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling.

机构信息

Speech Acoustics Laboratory, University of Arizona, Tucson, USA.

出版信息

J Speech Lang Hear Res. 2011 Oct;54(5):1267-83. doi: 10.1044/1092-4388(2011/10-0195). Epub 2011 Apr 15.

Abstract

PURPOSE

To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2).

METHOD

The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow, and acoustic waveforms and were related to the underlying vocal fold kinematics.

RESULTS

CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1.0 mm to 1.5 mm and decreased with separation > 1.5 mm.

CONCLUSIONS

CPP is generally a function of vocal process separation. H1*-H2* (see paragraph 6 of article text for an explanation of the asterisks) will increase or decrease with vocal process separation on the basis of vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures.

摘要

目的

将声带结构和运动学与 2 个声学测量指标相关联:倒频谱峰突出度 (CPP) 和第一谐波相对于第二谐波的幅度 (H1-H2)。

方法

作者使用了一个计算的、声带内表面的运动学模型,以一种与气息声一致的方式指定声带结构和振动的特征。改变了 4 个模型参数:声带内收程度、表面凸起、振动节占比和声门上紧缩。从模拟的声门区、声流和声学波形中测量 CPP 和 H1-H2,并将其与底层的声带运动学相关联。

结果

CPP 随着声带的分离程度的增加而减小,而节占比位置的影响较小。H1-H2 随着声带分离在 1.0 毫米到 1.5 毫米范围内增加,并随着分离超过 1.5 毫米而减小。

结论

CPP 通常是声带分离的函数。H1*-H2*(见文章文本第 6 段中对星号的解释)将根据声带形状、旋转模式的枢轴点和声门上声道形状的变化而增加或减少,限制了其作为气息声指标的实用性。未来的工作将把气息声的感知与声带运动学和声学测量联系起来。

相似文献

1
Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling.
J Speech Lang Hear Res. 2011 Oct;54(5):1267-83. doi: 10.1044/1092-4388(2011/10-0195). Epub 2011 Apr 15.
2
Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling.
J Speech Lang Hear Res. 2013 Aug;56(4):1209-23. doi: 10.1044/1092-4388(2012/12-0194). Epub 2013 Jun 19.
3
3D Reconstruction of Phonatory Glottal Shape and Volume: Effects of Neuromuscular Activation.
Laryngoscope. 2023 Feb;133(2):357-365. doi: 10.1002/lary.30178. Epub 2022 May 28.
4
Influence of Left-Right Asymmetries on Voice Quality in Simulated Paramedian Vocal Fold Paralysis.
J Speech Lang Hear Res. 2017 Feb 1;60(2):306-321. doi: 10.1044/2016_JSLHR-S-16-0076.
6
Analysis of Measured and Simulated Supraglottal Acoustic Waves.
J Voice. 2016 Sep;30(5):518-28. doi: 10.1016/j.jvoice.2015.08.006. Epub 2015 Sep 14.
7
Acoustic and perceptual effects of left-right laryngeal asymmetries based on computational modeling.
J Speech Lang Hear Res. 2014 Oct;57(5):1619-37. doi: 10.1044/2014_JSLHR-S-12-0405.
8
Cepstral analysis of voice in unilateral adductor vocal fold palsy.
J Voice. 2011 May;25(3):326-9. doi: 10.1016/j.jvoice.2009.12.010. Epub 2010 Mar 25.
9
Estimating Pressed and Breathy Phonation From Cepstral and Spectral Measures.
J Voice. 2025 Feb 27. doi: 10.1016/j.jvoice.2025.02.017.
10
Cepstral analysis of voice in persons with vocal nodules.
J Voice. 2010 Nov;24(6):651-3. doi: 10.1016/j.jvoice.2009.07.008. Epub 2010 Feb 19.

引用本文的文献

1
Characterization of upper esophageal sphincter pressures relative to vocal acoustics.
J Appl Physiol (1985). 2025 Jan 1;138(1):203-212. doi: 10.1152/japplphysiol.00385.2024. Epub 2024 Dec 6.
2
Acoustics and aerodynamic effects following glottal and infraglottal medialization in an excised larynx model.
Eur Arch Otorhinolaryngol. 2024 May;281(5):2523-2529. doi: 10.1007/s00405-024-08519-x. Epub 2024 Feb 29.
3
Spectral and cepstral measurements in women with behavioral dysphonia.
Codas. 2023 Nov 10;36(1):e20220327. doi: 10.1590/2317-1782/20232022327pt. eCollection 2023.
5
Voice Quality of Children With Cerebral Palsy.
J Speech Lang Hear Res. 2021 Aug 9;64(8):3051-3059. doi: 10.1044/2021_JSLHR-20-00633. Epub 2021 Jul 14.
6
Investigating blunt force trauma to the larynx: The role of inferior-superior vocal fold displacement on phonation.
J Biomech. 2021 May 24;121:110377. doi: 10.1016/j.jbiomech.2021.110377. Epub 2021 Mar 16.
7
Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
J Speech Lang Hear Res. 2017 Sep 18;60(9):2452-2471. doi: 10.1044/2017_JSLHR-S-16-0412.
8
Toward a unified theory of voice production and perception.
Loquens. 2014 Jan;1(1). doi: 10.3989/loquens.2014.009.

本文引用的文献

1
Perceptual sensitivity to first harmonic amplitude in the voice source.
J Acoust Soc Am. 2010 Oct;128(4):2085-9. doi: 10.1121/1.3478784.
2
Cepstral analysis of voice in unilateral adductor vocal fold palsy.
J Voice. 2011 May;25(3):326-9. doi: 10.1016/j.jvoice.2009.12.010. Epub 2010 Mar 25.
3
Cepstral analysis of voice in persons with vocal nodules.
J Voice. 2010 Nov;24(6):651-3. doi: 10.1016/j.jvoice.2009.07.008. Epub 2010 Feb 19.
4
Estimating dysphonia severity in continuous speech: application of a multi-parameter spectral/cepstral model.
Clin Linguist Phon. 2009 Nov;23(11):825-41. doi: 10.3109/02699200903242988.
5
Automatic modeling of acoustic perception of breathiness in pathological voices.
IEEE Trans Biomed Eng. 2009 Apr;56(4):932-40. doi: 10.1109/TBME.2008.2007910.
6
Nonlinear source-filter coupling in phonation: theory.
J Acoust Soc Am. 2008 May;123(5):2733-49. doi: 10.1121/1.2832337.
7
Unsteady behavior of flow in a scaled-up vocal folds model.
J Acoust Soc Am. 2007 Dec;122(6):3659-70. doi: 10.1121/1.2409485.
9
Measures of the glottal source spectrum.
J Speech Lang Hear Res. 2007 Jun;50(3):595-610. doi: 10.1044/1092-4388(2007/042).
10
Age, sex, and vowel dependencies of acoustic measures related to the voice source.
J Acoust Soc Am. 2007 Apr;121(4):2283-95. doi: 10.1121/1.2697522.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验