Suppr超能文献

放大的声带模型中流动的非稳定行为。

Unsteady behavior of flow in a scaled-up vocal folds model.

作者信息

Krane Michael, Barry Michael, Wei Timothy

机构信息

Center for Advanced Information Processing, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

J Acoust Soc Am. 2007 Dec;122(6):3659-70. doi: 10.1121/1.2409485.

Abstract

Measurements of the fluid flow through a scaled-up model of the human glottis are presented to determine whether glottal flow may be approximated as unsteady. Time- and space-resolved velocity vector fields from digital particle image velocimetry (DPIV) measurements of the flow through the gap between two moving, rigid walls are presented in four cases, over a range of Strouhal numbers: 0.010, 0.018, 0.035, 0.040, corresponding to life-scale f(0) of 30, 58, 109, and 126 Hz, respectively, at a Reynolds number of 8000. It is observed that (1) glottal flow onset is delayed after glottal opening and (2) glottal flow shutoff occurs prior to closure. A comparison between flow through a fully open, nonmoving glottis and that through the moving vocal folds shows a marked difference in spatial structure of the glottal jet. The following features of the flow are seen to exhibit strong dependence on cycle frequency: (a) glottal exit plane velocity, (b) volume flow, (c) vortex shedding rates, and (d) vortex amplitude. Vortex shedding appears to be a factor both in controlling flow resistance and in cycle-to-cycle volume flow variations. All these observations strongly suggest that glottal flow is inherently unsteady.

摘要

本文给出了通过人体声门放大模型的流体流动测量结果,以确定声门流是否可近似为非定常流动。在四个案例中,给出了通过两个移动刚性壁之间间隙的流动的数字粒子图像测速(DPIV)测量得到的时间和空间分辨速度矢量场,这些案例涵盖了一系列斯特劳哈尔数:0.010、0.018、0.035、0.040,分别对应于雷诺数为8000时,生活尺度下的f(0)为30、58、109和126Hz。观察到:(1)声门流起始在声门打开后延迟;(2)声门流关闭在声门关闭之前发生。通过完全打开、不移动的声门的流动与通过移动声带的流动之间的比较表明,声门射流的空间结构存在显著差异。流动的以下特征表现出对周期频率的强烈依赖性:(a)声门出口平面速度;(b)体积流量;(c)涡街脱落率;(d)涡幅。涡街脱落似乎是控制流动阻力和逐周期体积流量变化的一个因素。所有这些观察结果都强烈表明声门流本质上是非定常的。

相似文献

1
Unsteady behavior of flow in a scaled-up vocal folds model.
J Acoust Soc Am. 2007 Dec;122(6):3659-70. doi: 10.1121/1.2409485.
3
Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
J Biomech. 2015 May 1;48(7):1248-57. doi: 10.1016/j.jbiomech.2015.03.010. Epub 2015 Mar 19.
6
An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
J Acoust Soc Am. 2006 May;119(5 Pt 1):3011-21. doi: 10.1121/1.2186429.
7
Optimized transformation of the glottal motion into a mechanical model.
Med Eng Phys. 2011 Mar;33(2):210-7. doi: 10.1016/j.medengphy.2010.09.019. Epub 2010 Nov 5.
8
Experimental investigation of the influence of a posterior gap on glottal flow and sound.
J Acoust Soc Am. 2008 Aug;124(2):1171-9. doi: 10.1121/1.2945116.
9
Theoretical assessment of unsteady aerodynamic effects in phonation.
J Acoust Soc Am. 2006 Sep;120(3):1578-88. doi: 10.1121/1.2215408.
10
Intraglottal geometry and velocity measurements in canine larynges.
J Acoust Soc Am. 2014 Jan;135(1):380-8. doi: 10.1121/1.4837222.

引用本文的文献

1
Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
Fluids (Basel). 2022 Mar;7(3). doi: 10.3390/fluids7030097. Epub 2022 Mar 6.
2
Vortex Formation Times in the Glottal Jet, Measured in a Scaled-Up Model.
Fluids (Basel). 2021 Nov;6(11). doi: 10.3390/fluids6110412. Epub 2021 Nov 15.
3
Phase-averaged and cycle-to-cycle analysis of jet dynamics in a scaled up vocal-fold model.
J Fluid Mech. 2021 Jul 10;918. doi: 10.1017/jfm.2021.365. Epub 2021 May 17.
4
Cycle-to-cycle flow variations in a square duct with a symmetrically oscillating constriction.
Fluid Dyn Res. 2020 Feb;52(1). doi: 10.1088/1873-7005/ab52bf. Epub 2019 Nov 27.
7
Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
Comput Methods Appl Mech Eng. 2017 Mar 1;315:584-606. doi: 10.1016/j.cma.2016.11.010. Epub 2016 Oct 17.
8
Intraglottal velocity and pressure measurements in a hemilarynx model.
J Acoust Soc Am. 2015 Feb;137(2):935-43. doi: 10.1121/1.4906833.
9
Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
J Voice. 2014 Jul;28(4):411-9. doi: 10.1016/j.jvoice.2013.12.016. Epub 2014 Apr 13.
10
Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
J Biomech. 2014 Apr 11;47(6):1287-93. doi: 10.1016/j.jbiomech.2014.02.023. Epub 2014 Feb 24.

本文引用的文献

1
Theoretical assessment of unsteady aerodynamic effects in phonation.
J Acoust Soc Am. 2006 Sep;120(3):1578-88. doi: 10.1121/1.2215408.
2
Aeroacoustic production of low-frequency unvoiced speech sounds.
J Acoust Soc Am. 2005 Jul;118(1):410-27. doi: 10.1121/1.1862251.
3
Influence of collision on the flow through in-vitro rigid models of the vocal folds.
J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3354-62. doi: 10.1121/1.1625933.
4
Unsteady flow through in-vitro models of the glottis.
J Acoust Soc Am. 2003 Mar;113(3):1658-75. doi: 10.1121/1.1547459.
7
Voice simulation with a body-cover model of the vocal folds.
J Acoust Soc Am. 1995 Feb;97(2):1249-60. doi: 10.1121/1.412234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验