Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
Plant J. 2011 Aug;67(3):485-98. doi: 10.1111/j.1365-313X.2011.04612.x. Epub 2011 May 31.
In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.
在植物中,γ-氨基丁酸 (GABA) 在应对各种胁迫时会在细胞质中积累。GABA 被转运到线粒体中,在那里它被分解成 TCA 循环或其他中间产物。尽管有证据表明真核生物中有线粒体 GABA 转运体,但尚未鉴定出它们。本文描述了一种与单细胞 GABA 转运体在序列和拓扑结构上相似的拟南芥蛋白。该蛋白的表达可以补充 GABA 转运缺陷的酵母突变体。因此,该蛋白被命名为 AtGABP,以表示 GABA 通透酶活性。与 GFP 融合的 GABP 的体内定位和亚细胞级分的免疫印迹表明其定位于线粒体。直接将 [(3) H]GABA 摄取测量到分离的线粒体中,发现与野生型 (WT) 线粒体相比,gabp 突变体的线粒体摄取受损,这表明 AtGABP 是主要的线粒体 GABA 载体。对整个幼苗和分离的线粒体中放射性标记底物衍生的 CO(2) 释放的测量表明,gabp 突变体中 GABA 衍生的 TCA 循环输入受损,并且 TCA 循环活性代偿性增加。最后,gabp 突变体在人工培养基上碳源有限和低光照强度下的土壤中的生长异常,以及它们的代谢物谱,表明 AtGABP 在初级碳代谢和植物生长中起着重要作用。因此,AtGABP 介导的 GABA 从细胞质转运到线粒体对于确保适当的 GABA 介导的呼吸和碳代谢是重要的。在碳源有限的条件下,这种功能对于植物生长尤为重要。