Suppr超能文献

单一肌肉对身体动力学的多功能控制潜力,可用于姿势控制和跑步。

A single muscle's multifunctional control potential of body dynamics for postural control and running.

机构信息

Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1592-605. doi: 10.1098/rstb.2010.0367.

Abstract

A neuromechanical approach to control requires understanding how mechanics alters the potential of neural feedback to control body dynamics. Here, we rewrite activation of individual motor units of a behaving animal to mimic the effects of neural feedback without concomitant changes in other muscles. We target a putative control muscle in the cockroach, Blaberus discoidalis (L.), and simultaneously capture limb and body dynamics through high-speed videography and a micro-accelerometer backpack. We test four neuromechanical control hypotheses. We supported the hypothesis that mechanics linearly translates neural feedback into accelerations and rotations during static postural control. However, during running, the same neural feedback produced a nonlinear acceleration control potential restricted to the vertical plane. Using this, we reject the hypothesis from previous work that this muscle acts primarily to absorb energy from the body. The conversion of the control potential is paralleled by nonlinear changes in limb kinematics, supporting the hypothesis that significant mechanical feedback filters the graded neural feedback for running control. Finally, we insert the same neural feedback signal but at different phases in the dynamics. In this context, mechanical feedback enables turning by changing the timing and direction of the accelerations produced by the graded neural feedback.

摘要

神经机械控制方法要求理解力学如何改变神经反馈控制身体动力学的潜力。在这里,我们重新编写了行为动物个体运动单位的激活,以模拟神经反馈的效果,而不会同时改变其他肌肉。我们以拟议的 Cockroach(Blaberus discoidalis(L.))控制肌肉为目标,并通过高速录像和微型加速度计背包同时捕捉肢体和身体动力学。我们测试了四个神经机械控制假设。我们支持这样的假设,即力学在线性上将神经反馈转化为静态姿势控制过程中的加速度和旋转。然而,在跑步过程中,相同的神经反馈产生了非线性加速度控制潜力,仅限于垂直平面。利用这一点,我们拒绝了之前的工作假设,即该肌肉主要作用是吸收身体的能量。控制潜力的转换与肢体运动学的非线性变化相平行,支持了这样的假设,即显著的机械反馈为跑步控制过滤了分级神经反馈。最后,我们在动力学中以不同的相位插入相同的神经反馈信号。在这种情况下,机械反馈通过改变分级神经反馈产生的加速度的时间和方向来实现转向。

相似文献

1
A single muscle's multifunctional control potential of body dynamics for postural control and running.
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1592-605. doi: 10.1098/rstb.2010.0367.
2
Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback.
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1606-20. doi: 10.1098/rstb.2010.0368.
3
Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.
Biol Cybern. 2013 Apr;107(2):179-200. doi: 10.1007/s00422-012-0545-z. Epub 2013 Feb 1.
5
Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Feb;188(1):55-69. doi: 10.1007/s00359-002-0278-x. Epub 2002 Jan 31.
9
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Feb;188(1):39-53. doi: 10.1007/s00359-002-0277-y. Epub 2002 Jan 31.
10
The effects of feedback on stability and maneuverability of a phase-reduced model for cockroach locomotion.
Biol Cybern. 2018 Aug;112(4):387-401. doi: 10.1007/s00422-018-0762-1. Epub 2018 Jun 15.

引用本文的文献

1
Flight power muscles have a coordinated, causal role in controlling hawkmoth pitch turns.
J Exp Biol. 2024 Dec 15;227(24). doi: 10.1242/jeb.246840. Epub 2024 Dec 18.
3
Rapid Adaptation to Changing Mechanical Load by Ordered Recruitment of Identified Motor Neurons.
eNeuro. 2020 May 21;7(3). doi: 10.1523/ENEURO.0016-20.2020. Print 2020 May/Jun.
5
Precise timing is ubiquitous, consistent, and coordinated across a comprehensive, spike-resolved flight motor program.
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26951-26960. doi: 10.1073/pnas.1907513116. Epub 2019 Dec 16.
6
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.
Front Neuroinform. 2016 Oct 6;10:41. doi: 10.3389/fninf.2016.00041. eCollection 2016.
7
Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres.
Biol Open. 2016 Sep 15;5(9):1229-40. doi: 10.1242/bio.018705.
9
Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.
J Neurosci. 2015 Oct 21;35(42):14183-94. doi: 10.1523/JNEUROSCI.3610-14.2015.
10
How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion?
J Exp Biol. 2015 Oct;218(Pt 19):3010-22. doi: 10.1242/jeb.104646. Epub 2015 Aug 7.

本文引用的文献

1
Quantifying dynamic stability and maneuverability in legged locomotion.
Integr Comp Biol. 2002 Feb;42(1):149-57. doi: 10.1093/icb/42.1.149.
2
Computational Models for Neuromuscular Function.
IEEE Rev Biomed Eng. 2009;2:110-135. doi: 10.1109/RBME.2009.2034981.
3
Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback.
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1606-20. doi: 10.1098/rstb.2010.0368.
4
Insects running on elastic surfaces.
J Exp Biol. 2010 Jun 1;213(11):1907-20. doi: 10.1242/jeb.042515.
5
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
6
The brain in its body: motor control and sensing in a biomechanical context.
J Neurosci. 2009 Oct 14;29(41):12807-14. doi: 10.1523/JNEUROSCI.3338-09.2009.
7
The case for and against muscle synergies.
Curr Opin Neurobiol. 2009 Dec;19(6):601-7. doi: 10.1016/j.conb.2009.09.002. Epub 2009 Oct 12.
8
Estimating the phase of synchronized oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 1):051907. doi: 10.1103/PhysRevE.78.051907. Epub 2008 Nov 10.
9
Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation.
J Neurophysiol. 2008 Nov;100(5):2455-71. doi: 10.1152/jn.90274.2008. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验