Suppr超能文献

自由行走昆虫的关节扭矩揭示了腿部关节在推进和姿势控制中的不同功能。

Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.

作者信息

Dallmann Chris J, Dürr Volker, Schmitz Josef

机构信息

Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany

Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany.

出版信息

Proc Biol Sci. 2016 Jan 27;283(1823). doi: 10.1098/rspb.2015.1708.

Abstract

Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa-trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax-coxa and femur-tibia joints were often directed opposite to fore-aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.

摘要

确定肢体关节的机械输出对于理解诸如行走等复杂运动行为的控制至关重要。就昆虫行走而言,单关节控制的神经基础已得到充分描述。然而,缺乏以随时间变化的关节扭矩形式对运动输出的详细描述。在此,我们确定竹节虫的关节扭矩,以识别腿部关节在控制身体高度和推进方面的功能。通过测量自由行走动物的全身运动学和地面反作用力来确定扭矩。我们证明,尽管在形态和姿势上存在很大差异,但竹节虫的关节功能划分与其他昆虫模型系统相似。推进力是由围绕基节 - 转节关节的强烈下压扭矩产生的,而不是由收缩或屈伸扭矩产生的。围绕相应的胸 - 基节和股骨 - 胫节关节的扭矩通常与前后力和关节运动方向相反。这表明存在一种依赖姿势的机制,该机制可抵消腿部在身体负荷下的塌陷,并引导合力矢量,从而使强烈的下压扭矩能够控制身体高度和推进。我们的发现与其他行走、跳跃和飞行昆虫中描述的推进机制相似,并对当前昆虫行走的控制模型提出了挑战。

相似文献

2
Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli.
J Neurophysiol. 2021 Jul 1;126(1):227-248. doi: 10.1152/jn.00120.2021. Epub 2021 Jun 9.
3
Motor control of an insect leg during level and incline walking.
J Exp Biol. 2019 Apr 3;222(Pt 7):jeb188748. doi: 10.1242/jeb.188748.
4
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
J Neurophysiol. 2018 Oct 1;120(4):1807-1823. doi: 10.1152/jn.00371.2018. Epub 2018 Jul 18.
5
Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.
J Neurophysiol. 2024 Feb 1;131(2):198-215. doi: 10.1152/jn.00414.2023. Epub 2024 Jan 3.
6
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
J Neurophysiol. 2004 Jul;92(1):42-51. doi: 10.1152/jn.01271.2003. Epub 2004 Mar 3.
7
Controlling a system with redundant degrees of freedom. I. Torque distribution in still standing stick insects.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Aug;194(8):719-33. doi: 10.1007/s00359-008-0343-1. Epub 2008 Jul 19.
10
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Nov;191(11):1037-54. doi: 10.1007/s00359-005-0029-x. Epub 2005 Nov 4.

引用本文的文献

1
Natural variability and individuality of walking behavior in Drosophila.
J Exp Biol. 2024 Nov 15;227(22). doi: 10.1242/jeb.247878. Epub 2024 Nov 21.
2
A leg model based on anatomical landmarks to study 3D joint kinematics of walking in .
Front Bioeng Biotechnol. 2024 Jun 26;12:1357598. doi: 10.3389/fbioe.2024.1357598. eCollection 2024.
3
Shaping the energy curves of a servomotor-based hexapod robot.
Sci Rep. 2024 May 22;14(1):11675. doi: 10.1038/s41598-024-62184-y.
4
From Motor-Output to Connectivity: An In-Depth Study of Rhythmic Patterns in the Cockroach .
Front Insect Sci. 2021 May 20;1:655933. doi: 10.3389/finsc.2021.655933. eCollection 2021.
5
Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.
J Neurophysiol. 2024 Feb 1;131(2):198-215. doi: 10.1152/jn.00414.2023. Epub 2024 Jan 3.
7
Adaptive load feedback robustly signals force dynamics in robotic model of stepping.
Front Neurorobot. 2023 Jan 26;17:1125171. doi: 10.3389/fnbot.2023.1125171. eCollection 2023.
8
neuroWalknet, a controller for hexapod walking allowing for context dependent behavior.
PLoS Comput Biol. 2023 Jan 24;19(1):e1010136. doi: 10.1371/journal.pcbi.1010136. eCollection 2023 Jan.
9
Thorax-Segment- and Leg-Segment-Specific Motor Control for Adaptive Behavior.
Front Physiol. 2022 May 4;13:883858. doi: 10.3389/fphys.2022.883858. eCollection 2022.
10
Analyzing Modeled Torque Profiles to Understand Scale-Dependent Active Muscle Responses in the Hip Joint.
Biomimetics (Basel). 2022 Jan 20;7(1):17. doi: 10.3390/biomimetics7010017.

本文引用的文献

1
Spatial co-ordination of foot contacts in unrestrained climbing insects.
J Exp Biol. 2014 Sep 15;217(Pt 18):3242-53. doi: 10.1242/jeb.108167. Epub 2014 Jul 10.
2
Level locomotion in wood ants: evidence for grounded running.
J Exp Biol. 2014 Jul 1;217(Pt 13):2358-70. doi: 10.1242/jeb.098426. Epub 2014 Apr 17.
3
In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.
PLoS Biol. 2014 Mar 25;12(3):e1001823. doi: 10.1371/journal.pbio.1001823. eCollection 2014 Mar.
4
Insects use two distinct classes of steps during unrestrained locomotion.
PLoS One. 2013 Dec 23;8(12):e85321. doi: 10.1371/journal.pone.0085321. eCollection 2013.
5
Passive joint forces are tuned to limb use in insects and drive movements without motor activity.
Curr Biol. 2013 Aug 5;23(15):1418-26. doi: 10.1016/j.cub.2013.06.024. Epub 2013 Jul 18.
6
Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.
J R Soc Interface. 2013 Mar 13;10(82):20121050. doi: 10.1098/rsif.2012.1050. Print 2013 May 6.
7
Abdicating power for control: a precision timing strategy to modulate function of flight power muscles.
Proc Biol Sci. 2012 Oct 7;279(1744):3958-66. doi: 10.1098/rspb.2012.1085. Epub 2012 Jul 25.
8
Force encoding in stick insect legs delineates a reference frame for motor control.
J Neurophysiol. 2012 Sep;108(5):1453-72. doi: 10.1152/jn.00274.2012. Epub 2012 Jun 6.
9
Lessons for circuit function from large insects: towards understanding the neural basis of motor flexibility.
Curr Opin Neurobiol. 2012 Aug;22(4):602-8. doi: 10.1016/j.conb.2012.02.003. Epub 2012 Mar 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验