Suppr超能文献

通过诱导果蝇空中失足来发现其飞行自动稳定器。

Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

机构信息

Department of Physics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.

Abstract

Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

摘要

就像莱特兄弟实施控制以实现稳定的飞机飞行一样,飞行昆虫已经进化出行为策略,以确保从飞行干扰中恢复。在系留和解剖昆虫上进行的开创性研究表明,感觉、神经和肌肉骨骼系统在飞行控制中发挥着重要作用。然而,这些研究不能产生昆虫飞行稳定性的综合模型,因为它们没有将这些系统与自由飞行空气动力学的相互作用结合起来。我们通过向自由飞行的果蝇(黑腹果蝇)施加扭矩脉冲并测量它们的行为反应,直接研究控制和稳定性。高速视频和一种新的运动跟踪方法捕捉到空中的“踉跄”,我们发现,果蝇通过准确地回到原来的方向来应对轻微的干扰。这些昆虫利用稳定的空气动力影响和主动扭矩产生来在 < 60 ms 内将其航向恢复到 2 度以内。为了解释这种恢复行为,我们形成了一个反馈控制模型,该模型包括果蝇感知身体旋转的能力、处理此信息以及驱动产生纠正空气动力扭矩的机翼运动的能力。因此,就像早期的人造飞机和现代战斗机一样,果蝇采用了一种自动稳定方案,该方案对短时间尺度的干扰做出反应。

相似文献

1
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.通过诱导果蝇空中失足来发现其飞行自动稳定器。
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
2
Predicting fruit fly's sensing rate with insect flight simulations.用昆虫飞行模拟预测果蝇的感知率。
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11246-51. doi: 10.1073/pnas.1314738111. Epub 2014 Jul 21.
3
Pitch perfect: how fruit flies control their body pitch angle.完美姿态:果蝇如何控制其身体俯仰角度。
J Exp Biol. 2015 Nov;218(Pt 21):3508-19. doi: 10.1242/jeb.122622. Epub 2015 Sep 18.
4
The aerodynamics of free-flight maneuvers in Drosophila.果蝇自由飞行机动的空气动力学
Science. 2003 Apr 18;300(5618):495-8. doi: 10.1126/science.1081944.
6
Fruit flies modulate passive wing pitching to generate in-flight turns.果蝇通过调节被动翅膀俯仰来产生飞行转弯。
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
7
The aerodynamics and control of free flight manoeuvres in Drosophila.果蝇自由飞行机动的空气动力学与控制
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0388.
9
Controlling roll perturbations in fruit flies.控制果蝇的侧倾扰动。
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0075.
10
The aerodynamics of hovering flight in Drosophila.果蝇悬停飞行的空气动力学
J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.

引用本文的文献

1
Geometrically modulated contact forces enable hula hoop levitation.几何调制接触力实现呼啦圈悬浮。
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411588121. doi: 10.1073/pnas.2411588121. Epub 2024 Dec 30.
3
Hummingbirds use wing inertial effects to improve manoeuvrability.蜂鸟利用翅膀惯性效应来提高机动性。
J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.
6
Sensory fusion in the hoverfly righting reflex.悬停蝇正反转反射中的感觉融合。
Sci Rep. 2023 Apr 15;13(1):6138. doi: 10.1038/s41598-023-33302-z.
9
Model-Based Tracking of Fruit Flies in Free Flight.基于模型的果蝇自由飞行跟踪
Insects. 2022 Nov 3;13(11):1018. doi: 10.3390/insects13111018.
10
Discovering sparse control strategies in neural activity.发现神经活动中的稀疏控制策略。
PLoS Comput Biol. 2022 May 27;18(5):e1010072. doi: 10.1371/journal.pcbi.1010072. eCollection 2022 May.

本文引用的文献

2
Fruit flies modulate passive wing pitching to generate in-flight turns.果蝇通过调节被动翅膀俯仰来产生飞行转弯。
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
5
A neural basis for gyroscopic force measurement in the halteres of Holorusia.霍洛鲁西亚(Holorusia)平衡棒中陀螺力测量的神经基础。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Oct;194(10):887-97. doi: 10.1007/s00359-008-0361-z. Epub 2008 Aug 27.
9
The aerodynamics of hovering flight in Drosophila.果蝇悬停飞行的空气动力学
J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.
10
Dynamic flight stability of a hovering bumblebee.悬停大黄蜂的动态飞行稳定性
J Exp Biol. 2005 Feb;208(Pt 3):447-59. doi: 10.1242/jeb.01407.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验