Gavezzotti Angelo
Dipartimento di Chimica Strutturale, Università di Milano, 20133 Milano, Italy.
Top Curr Chem. 2012;315:1-32. doi: 10.1007/128_2011_131.
The analysis, prediction, and control of crystal structures are frontier topics in present-day research in view of their importance for materials science, pharmaceutical sciences, and many other chemical processes. Computational crystallography is nowadays a branch of the chemical and physicals sciences dealing with the study of inner structure, intermolecular bonding, and cohesive energies in crystals. This chapter, mainly focused on organic compounds, first reviews the current methods for X-ray diffraction data treatment, and the new tools available both for quantitative statistical analysis of geometries of intermolecular contacts using crystallographic databases and for the comparison of crystal structures to detect similarities or differences. Quantum chemical methods for the evaluation of intermolecular energies are then reviewed in detail: atoms-in-molecules and other density-based methods, ab initio MO theory, perturbation theory methods, dispersion-supplemented DFT, semiempirical methods and, finally, entirely empirical atom-atom force fields. The superiority of analyses based on energy over analyses based on geometry is highlighted, with caveats on improvised definitions of some intermolecular chemical bonds that are in fact no more than fluxional approach preferences. A perspective is also given on the present status of computational methods for the prediction of crystal structures: in spite of great steps forward, some fundamental obstacles related to the kinetic-thermodynamic dilemma persist. Molecular dynamics and Monte Carlo methods for the simulation of crystal structures and of phase transitions are reviewed. These methods are still at a very speculative stage, but hold promise for substantial future developments.
鉴于晶体结构对材料科学、制药科学及许多其他化学过程的重要性,其分析、预测和控制是当今研究的前沿课题。计算晶体学如今是化学和物理科学的一个分支,主要研究晶体的内部结构、分子间键合及内聚能。本章主要聚焦于有机化合物,首先回顾了当前处理X射线衍射数据的方法,以及可用于利用晶体学数据库对分子间接触几何结构进行定量统计分析和比较晶体结构以检测异同的新工具。然后详细综述了评估分子间能量的量子化学方法:分子中的原子及其他基于密度的方法、从头算分子轨道理论、微扰理论方法、色散补充密度泛函理论、半经验方法,最后是完全经验性的原子-原子力场。强调了基于能量的分析相对于基于几何结构的分析的优越性,同时对一些实际上不过是流动方法偏好的分子间化学键的临时定义提出了警告。还展望了晶体结构预测计算方法的现状:尽管取得了巨大进展,但与动力学-热力学困境相关的一些基本障碍仍然存在。综述了用于模拟晶体结构和相变的分子动力学和蒙特卡罗方法。这些方法仍处于非常推测性的阶段,但有望在未来取得重大进展。