Suppr超能文献

相似文献

1
Tuning physical properties of nanocomplexes through microfluidics-assisted confinement.
Nano Lett. 2011 May 11;11(5):2178-82. doi: 10.1021/nl200862n. Epub 2011 Apr 20.
3
Microfluidics-Assembled Nanovesicles for Nucleic Acid Delivery.
Acc Chem Res. 2025 Feb 18;58(4):570-582. doi: 10.1021/acs.accounts.4c00738. Epub 2025 Feb 4.
4
Generic nanomaterial positioning by carrier and stationary phase design.
Nano Lett. 2007 Sep;7(9):2764-8. doi: 10.1021/nl071271b. Epub 2007 Jul 28.
5
Assembly of barcode-like nucleic acid nanostructures.
Small. 2014 Oct 15;10(19):3923-6. doi: 10.1002/smll.201400942. Epub 2014 Jun 30.
7
Anisotropically phase-separated biphasic particles.
Small. 2006 May;2(5):596-8. doi: 10.1002/smll.200500519.
8
Design and application of multifunctional DNA nanocarriers for therapeutic delivery.
Acta Biomater. 2014 Apr;10(4):1683-91. doi: 10.1016/j.actbio.2013.07.021. Epub 2013 Jul 27.
9
Nucleic acid based molecular devices.
Angew Chem Int Ed Engl. 2011 Mar 28;50(14):3124-56. doi: 10.1002/anie.200907223.

引用本文的文献

1
Polymer Solutions in Microflows: Tracking and Control over Size Distribution.
Polymers (Basel). 2024 Dec 26;17(1):28. doi: 10.3390/polym17010028.
2
Tuning Properties of Polyelectrolyte-Surfactant Associates in Two-Phase Microfluidic Flows.
Polymers (Basel). 2022 Dec 14;14(24):5480. doi: 10.3390/polym14245480.
3
Activation and Switching of Supramolecular Chemical Signals in Multi-Output Microfluidic Devices.
Micromachines (Basel). 2022 Oct 19;13(10):1778. doi: 10.3390/mi13101778.
4
On-Chip Control over Polyelectrolyte-Surfactant Complexation in Nonequilibrium Microfluidic Confinement.
Polymers (Basel). 2022 Sep 30;14(19):4109. doi: 10.3390/polym14194109.
5
Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends.
Biosensors (Basel). 2021 Dec 31;12(1):20. doi: 10.3390/bios12010020.
6
Flash Technology-Based Self-Assembly in Nanoformulation: From Fabrication to Biomedical Applications.
Mater Today (Kidlington). 2021 Jan-Feb;42:99-116. doi: 10.1016/j.mattod.2020.08.019. Epub 2020 Nov 2.
7
Non-viral delivery of CRISPR-Cas9 complexes for targeted gene editing via a polymer delivery system.
Gene Ther. 2022 Apr;29(3-4):157-170. doi: 10.1038/s41434-021-00282-6. Epub 2021 Aug 6.
9
Heat-shrinking DNA nanoparticles for in vivo gene delivery.
Gene Ther. 2020 May;27(5):196-208. doi: 10.1038/s41434-019-0117-0. Epub 2020 Jan 3.

本文引用的文献

1
Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery.
Nano Today. 2010 Dec 1;5(6):553-569. doi: 10.1016/j.nantod.2010.10.007.
2
Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy.
Mol Ther. 2011 Jan;19(1):103-12. doi: 10.1038/mt.2010.233. Epub 2010 Nov 2.
3
Simultaneous Non-invasive Analysis of DNA Condensation and Stability by Two-step QD-FRET.
Nano Today. 2009 Apr 1;4(2):125-134. doi: 10.1016/j.nantod.2009.02.008.
4
Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery.
J R Soc Interface. 2010 Feb 6;7 Suppl 1(Suppl 1):S67-82. doi: 10.1098/rsif.2009.0260. Epub 2009 Sep 4.
5
Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery.
Lab Chip. 2009 Sep 21;9(18):2638-43. doi: 10.1039/b823191e. Epub 2009 Jun 24.
6
Size-Dependent Endocytosis of Nanoparticles.
Adv Mater. 2009;21:419-424. doi: 10.1002/adma.200801393.
8
Knocking down barriers: advances in siRNA delivery.
Nat Rev Drug Discov. 2009 Feb;8(2):129-38. doi: 10.1038/nrd2742.
9
Confinement of DNA in water-in-oil microemulsions.
Langmuir. 2008 Oct 21;24(20):11828-33. doi: 10.1021/la802233e. Epub 2008 Sep 27.
10
Nanoparticle-mediated cellular response is size-dependent.
Nat Nanotechnol. 2008 Mar;3(3):145-50. doi: 10.1038/nnano.2008.30. Epub 2008 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验