Bezrukov Artem, Galyametdinov Yuriy
Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia.
Polymers (Basel). 2024 Dec 26;17(1):28. doi: 10.3390/polym17010028.
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties. We utilized the idea of modeling cross-channel diffusion in polydisperse polymer microflows using dynamic light scattering size distribution curves as the source data. The model was implemented into a Matlab script which predicts changes in polymer size distribution at microfluidic chip outputs. We verified the modeling predictions in experiments with a series of microchips by detecting the optical responses of injected nematic liquid crystals in the presence of microfluidic polymer species and analyzing the polymer size distribution after microfluidic processing. The results offer new approaches to tuning the size and dispersity of macromolecules in solution, developing auxiliary tools for such techniques as dynamic light scattering, and labs-on-chips for the combined diagnostics and processing of polymers.
微流控技术为通道内溶解的大分子物质的操控与分析提供了前沿的技术进展。微流控装置控制聚合物大分子关键特性(如尺寸分布)的内在潜力需要充分发挥。这项工作提出了一种综合方法,用于分析聚合物溶液的微观行为并改变其性质。我们利用以动态光散射尺寸分布曲线作为源数据,对多分散聚合物微流中跨通道扩散进行建模的思路。该模型被实现为一个Matlab脚本,可预测微流控芯片输出端聚合物尺寸分布的变化。我们通过在存在微流控聚合物物质的情况下检测注入的向列型液晶的光学响应,并分析微流控处理后的聚合物尺寸分布,在一系列微芯片实验中验证了建模预测。研究结果为调节溶液中大分子的尺寸和分散性、开发动态光散射等技术的辅助工具以及用于聚合物联合诊断与处理的芯片实验室提供了新方法。