Suppr超能文献

一种新的肢端肥大症检测方法:自动面部分类的诊断准确性。

A novel approach to the detection of acromegaly: accuracy of diagnosis by automatic face classification.

机构信息

Medizinische Klinik, Innenstadt, Ludwig-Maximilians University, Ziemssenstrasse 1, 80336 Munich, Germany.

出版信息

J Clin Endocrinol Metab. 2011 Jul;96(7):2074-80. doi: 10.1210/jc.2011-0237. Epub 2011 Apr 20.

Abstract

CONTEXT

The delay between onset of first symptoms and diagnosis of the acromegaly is 6-10 yr. Acromegaly causes typical changes of the face that might be recognized by face classification software.

OBJECTIVE

The objective of the study was to assess classification accuracy of acromegaly by face-classification software.

DESIGN

This was a diagnostic study.

SETTING

The study was conducted in specialized care.

PARTICIPANTS

Participants in the study included 57 patients with acromegaly (29 women, 28 men) and 60 sex- and age-matched controls.

INTERVENTIONS

We took frontal and side photographs of the faces and grouped patients into subjects with mild, moderate, and severe facial features of acromegaly by overall impression. We then analyzed all pictures using computerized similarity analysis based on Gabor jets and geometry functions. We used the leave-one-out cross-validation method to classify subjects by the software. Additionally, all subjects were classified by visual impression by three acromegaly experts and three general internists.

MAIN OUTCOME MEASURE

Classification accuracy by software, experts, and internists was measured.

FINDINGS

The software correctly classified 71.9% of patients and 91.5% of controls. Classification accuracy for patients by visual analysis was 63.2 and 42.1% by experts and general internists, respectively. Classification accuracy for controls was 80.8 and 87.0% by experts and internists, respectively. The highest differences in accuracy between software and experts and internists were present for patients with mild acromegaly.

CONCLUSIONS

Acromegaly can be detected by computer software using photographs of the face. Classification accuracy by software is higher than by medical experts or general internists, particularly in patients with mild features of acromegaly. This is a promising tool to help detecting acromegaly.

摘要

背景

从肢端肥大症的最初症状出现到确诊的时间间隔为 6-10 年。肢端肥大症会导致面容出现典型变化,这些变化可能会被面部分类软件识别。

目的

评估面部分类软件对肢端肥大症的分类准确性。

设计

这是一项诊断研究。

设置

研究在专门的医疗中心进行。

参与者

研究对象包括 57 例肢端肥大症患者(29 名女性,28 名男性)和 60 名性别和年龄匹配的对照者。

干预措施

我们拍摄了患者的正面和侧面照片,并根据整体印象将患者分为面容轻度、中度和重度肢端肥大症的亚组。然后,我们使用基于 Gabor 喷射和几何函数的计算机相似性分析来分析所有照片。我们使用留一法交叉验证方法通过软件对受试者进行分类。此外,三位肢端肥大症专家和三位普通内科医生还通过视觉印象对所有受试者进行了分类。

主要观察指标

软件、专家和内科医生分类的准确性。

发现

软件正确分类了 71.9%的患者和 91.5%的对照者。视觉分析对患者的分类准确率为 63.2%,专家和普通内科医生的分类准确率分别为 42.1%和 42.1%。对对照者的分类准确率分别为 80.8%和 87.0%,专家和内科医生的分类准确率分别为 80.8%和 87.0%。软件与专家和内科医生之间的准确率差异最大的是面容轻度肢端肥大症患者。

结论

可以使用面部照片通过计算机软件检测肢端肥大症。软件的分类准确率高于医学专家或普通内科医生,尤其是在面容轻度肢端肥大症患者中。这是一种有前途的帮助检测肢端肥大症的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验