Suppr超能文献

利用深度学习构建基于面部照片的肢端肥大症自动诊断和严重程度分级模型。

Constructing an automatic diagnosis and severity-classification model for acromegaly using facial photographs by deep learning.

机构信息

Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, NO.1 Shuaifuyuan Hutong of Dongcheng District, Beijing, 100730, China.

Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

出版信息

J Hematol Oncol. 2020 Jul 3;13(1):88. doi: 10.1186/s13045-020-00925-y.

Abstract

Due to acromegaly's insidious onset and slow progression, its diagnosis is usually delayed, thus causing severe complications and treatment difficulty. A convenient screening method is imperative. Based on our previous work, we herein developed a new automatic diagnosis and severity-classification model for acromegaly using facial photographs by deep learning on the data of 2148 photographs at different severity levels. Each photograph was given a score reflecting its severity (range 1~3). Our developed model achieved a prediction accuracy of 90.7% on the internal test dataset and outperformed the performance of ten junior internal medicine physicians (89.0%). The prospect of applying this model to real clinical practices is promising due to its potential health economic benefits.

摘要

由于肢端肥大症的起病隐匿和进展缓慢,其诊断通常被延误,从而导致严重的并发症和治疗困难。因此,需要一种方便的筛查方法。基于我们之前的工作,我们使用深度学习技术,对 2148 张不同严重程度的面部照片进行分析,建立了一种新的肢端肥大症自动诊断和严重程度分级模型。每张照片都被赋予了一个反映其严重程度的分数(范围为 1~3)。我们开发的模型在内部测试数据集上的预测准确率为 90.7%,优于 10 位初级内科医生(89.0%)的表现。由于该模型具有潜在的健康经济效益,因此有望应用于实际临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b44/7333291/6fb24438e330/13045_2020_925_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验