Suppr超能文献

基于动力神经场的一种新聚类方法。

A new clustering approach on the basis of dynamical neural field.

机构信息

Department of Applied Mathematics, School of Science, Xi'an Jiaotong University, China.

出版信息

Neural Comput. 2011 Aug;23(8):2032-57. doi: 10.1162/NECO_a_00153. Epub 2011 Apr 26.

Abstract

In this letter, we present a new hierarchical clustering approach based on the evolutionary process of Amari's dynamical neural field model. Dynamical neural field theory provides a theoretical framework macroscopically describing the activity of neuron ensemble. Based on it, our clustering approach is essentially close to the neurophysiological nature of perception. It is also computationally stable, insensitive to noise, flexible, and tractable for data with complex structure. Some examples are given to show the feasibility.

摘要

在这封信中,我们提出了一种新的基于 Amari 动力神经场模型进化过程的层次聚类方法。动力神经场理论提供了一个从宏观上描述神经元集合活动的理论框架。在此基础上,我们的聚类方法本质上接近感知的神经生理学特性。它在计算上也是稳定的,对噪声不敏感,灵活且易于处理具有复杂结构的数据。一些例子被给出以显示其可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验