Suppr超能文献

用于传感器网络数据分析的几何扩散

Geometric diffusions for the analysis of data from sensor networks.

作者信息

Coifman Ronald R, Maggioni Mauro, Zucker Steven W, Kevrekidis Ioannis G

机构信息

Program of Applied Mathematics, Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, CT 06520, USA.

出版信息

Curr Opin Neurobiol. 2005 Oct;15(5):576-84. doi: 10.1016/j.conb.2005.08.012.

Abstract

Harmonic analysis on manifolds and graphs has recently led to mathematical developments in the field of data analysis. The resulting new tools can be used to compress and analyze large and complex data sets, such as those derived from sensor networks or neuronal activity datasets, obtained in the laboratory or through computer modeling. The nature of the algorithms (based on diffusion maps and connectivity strengths on graphs) possesses a certain analogy with neural information processing, and has the potential to provide inspiration for modeling and understanding biological organization in perception and memory formation.

摘要

流形和图上的调和分析最近推动了数据分析领域的数学发展。由此产生的新工具可用于压缩和分析大型复杂数据集,例如从实验室或通过计算机建模获得的传感器网络或神经元活动数据集中衍生出的数据集。这些算法(基于图上的扩散映射和连接强度)的性质与神经信息处理有一定的相似性,并且有可能为感知和记忆形成中的生物组织建模和理解提供灵感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验