Suppr超能文献

基于希尔伯特-黄变换的 TMS 诱发脑电振荡的时频谱分析。

Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert-Huang transform.

机构信息

Department of Clinical Sciences Luigi Sacco, Università degli Studi di Milano, Milan, Italy.

出版信息

J Neurosci Methods. 2011 Jun 15;198(2):236-45. doi: 10.1016/j.jneumeth.2011.04.013. Epub 2011 Apr 15.

Abstract

A single pulse of Transcranial Magnetic Stimulation (TMS) generates electroencephalogram (EEG) oscillations that are thought to reflect intrinsic properties of the stimulated cortical area and its fast interactions with other cortical areas. Thus, a tool to decompose TMS-evoked oscillations in the time-frequency domain on a millisecond timescale and on a broadband frequency range may help to understand information transfer across cortical oscillators. Some recent studies have employed algorithms based on the Wavelet Transform (WT) to study TMS-evoked EEG oscillations in healthy and pathological conditions. However, these methods do not allow to describe TMS-evoked EEG oscillations with high resolution in time and frequency domains simultaneously. Here, we first develop an algorithm based on Hilbert-Huang Transform (HHT) to compute statistically significant time-frequency spectra of TMS-evoked EEG oscillations on a single trial basis. Then, we compared the performances of the HHT-based algorithm with the WT-based one by applying both of them to a set of simulated signals. Finally, we applied both algorithms to real TMS-evoked potentials recorded in healthy or schizophrenic subjects. We found that the HHT-based algorithm outperforms the WT-based one in detecting the time onset of TMS-evoked oscillations in the classical EEG bands. These results suggest that the HHT-based algorithm may be used to study the communication between different cortical oscillators on a fine time scale.

摘要

单次经颅磁刺激(TMS)产生脑电图(EEG)振荡,这些振荡被认为反映了刺激皮质区的固有特性及其与其他皮质区的快速相互作用。因此,一种能够在毫秒时间尺度和宽带频率范围内对 TMS 诱发的振荡进行时频域分解的工具,可能有助于理解皮质振荡器之间的信息传递。一些最近的研究采用基于小波变换(WT)的算法来研究健康和病理条件下 TMS 诱发的 EEG 振荡。然而,这些方法不允许同时在时间和频率域以高分辨率描述 TMS 诱发的 EEG 振荡。在这里,我们首先开发了一种基于希尔伯特-黄变换(HHT)的算法,用于在单次试验的基础上计算 TMS 诱发的 EEG 振荡的统计显著时频谱。然后,我们通过将这两种算法应用于一组模拟信号,比较了 HHT 算法和 WT 算法的性能。最后,我们将这两种算法应用于健康或精神分裂症受试者记录的真实 TMS 诱发电位。我们发现,HHT 算法在检测经典 EEG 波段中 TMS 诱发振荡的时间起始方面优于 WT 算法。这些结果表明,HHT 算法可用于在精细时间尺度上研究不同皮质振荡器之间的通信。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验