Suppr超能文献

ATP 和 Mg2+ 促进叶绿体 2-Cys 过氧化物酶的可逆寡聚化和聚集。

ATP and Mg2+ promote the reversible oligomerization and aggregation of chloroplast 2-Cys peroxiredoxin.

机构信息

Instituto de Investigaciones Bioquímicas-Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Depto. Química Biológica-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.

出版信息

J Biol Chem. 2011 Jul 1;286(26):23441-51. doi: 10.1074/jbc.M111.239434. Epub 2011 Apr 27.

Abstract

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg(2+) (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mM ATP. Remarkably, the withdrawal of ATP or Mg(2+) brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of β-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg(129) and Arg(152), are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues.

摘要

2- 半胱氨酸过氧化物酶(2-Cys Prxs)是普遍存在的过氧化物酶,在细胞抗氧化防御和过氧化氢介导的信号转导中具有重要作用。保守半胱氨酸的翻译后修饰导致其从低分子量寡聚体向高分子量寡聚体转变,从而引发从过氧化物酶到分子伴侣的功能转变。然而,非共价相互作用的 2-Cys Prx 与代谢物如何调节四级结构仍不清楚。在这里,我们揭示了 ATP 和 Mg2+(ATP/Mg)促进叶绿体 2-Cys Prx(多肽 23.5 kDa)自聚合形成可溶性的高阶组装体(>2 MDa),超过 5 mM ATP 后会进一步聚集成不溶性聚集体。值得注意的是,ATP 或 Mg2+的去除会使可溶性寡聚体和不溶性聚集体恢复到天然构象,而不会影响相关功能。正如透射电子显微镜所证实的那样,ATP/Mg 驱动类圆环的十聚体(直径 13nm)形成大的球体状颗粒(直径约 30nm)。对 ATP 标记的 2-Cys Prx 的圆二色性研究表明,ATP/Mg 增加了 β-折叠的比例,同时减少了 α-螺旋的含量。与此观察结果一致,不溶性聚集体的形成强烈地被 2,2,2-三氟乙醇(一种用于诱导α-螺旋构象的共溶剂)所阻止。我们进一步发现,当两个高度保守的残基,Arg(129)和 Arg(152)发生突变时,自聚合对 ATP/Mg 的响应与相关的过氧化物酶和伴侣活性的响应突然分离。总的来说,我们的数据揭示了 ATP/Mg 与 2-Cys Prx 的非共价相互作用动态调节四级结构,从而将细胞能量的非氧化还原化学与半胱氨酸残基的氧化还原转化偶联起来。

相似文献

1
ATP and Mg2+ promote the reversible oligomerization and aggregation of chloroplast 2-Cys peroxiredoxin.
J Biol Chem. 2011 Jul 1;286(26):23441-51. doi: 10.1074/jbc.M111.239434. Epub 2011 Apr 27.
2
The C-terminal extension of chloroplast 2-Cys peroxiredoxin is critical for interaction with ATP.
Biochemistry. 2012 Mar 20;51(11):2169-71. doi: 10.1021/bi201843b. Epub 2012 Mar 6.
3
ATP-dependent modulation and autophosphorylation of rapeseed 2-Cys peroxiredoxin.
FEBS J. 2008 Apr;275(7):1450-1463. doi: 10.1111/j.1742-4658.2008.06299.x. Epub 2008 Feb 14.
4
The 1-Cys peroxiredoxin, a regulator of seed dormancy, functions as a molecular chaperone under oxidative stress conditions.
Plant Sci. 2011 Aug;181(2):119-24. doi: 10.1016/j.plantsci.2011.04.010. Epub 2011 Apr 30.
6
Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity.
Biochemistry. 2011 Apr 19;50(15):3204-10. doi: 10.1021/bi101373h. Epub 2011 Mar 25.
8
Physiological Significance of Plant Peroxiredoxins and the Structure-Related and Multifunctional Biochemistry of Peroxiredoxin 1.
Antioxid Redox Signal. 2018 Mar 1;28(7):625-639. doi: 10.1089/ars.2017.7400. Epub 2018 Jan 2.
9
Crystal structure of Arabidopsis thaliana peroxiredoxin A C119S mutant.
Acta Crystallogr F Struct Biol Commun. 2018 Oct 1;74(Pt 10):625-631. doi: 10.1107/S2053230X18010920. Epub 2018 Sep 19.

引用本文的文献

1
Peroxiredoxins in parasites.
Antioxid Redox Signal. 2012 Aug 15;17(4):608-33. doi: 10.1089/ars.2011.4404. Epub 2012 Jan 25.

本文引用的文献

1
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study.
J Biol Chem. 2011 May 20;286(20):18048-55. doi: 10.1074/jbc.M111.232355. Epub 2011 Mar 8.
2
PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family.
Nucleic Acids Res. 2011 Jan;39(Database issue):D332-7. doi: 10.1093/nar/gkq1060. Epub 2010 Oct 29.
3
Hubs and bottlenecks in plant molecular signalling networks.
New Phytol. 2010 Dec;188(4):919-38. doi: 10.1111/j.1469-8137.2010.03502.x. Epub 2010 Oct 19.
4
Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones.
Antioxid Redox Signal. 2011 Aug 1;15(3):781-94. doi: 10.1089/ars.2010.3393. Epub 2011 Mar 31.
8
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Mol Plant. 2009 Nov;2(6):1273-88. doi: 10.1093/mp/ssp089. Epub 2009 Nov 1.
9
An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.
PLoS Comput Biol. 2009 Oct;5(10):e1000541. doi: 10.1371/journal.pcbi.1000541. Epub 2009 Oct 23.
10
Structural plasticity in actin and tubulin polymer dynamics.
Science. 2009 Aug 21;325(5943):960-3. doi: 10.1126/science.1168823.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验