Suppr超能文献

过氧化物酶 2 和 3 与过氧化氢异常反应性的模型:动力学和计算研究。

Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study.

机构信息

Department of Pathology and National Research Centre for Growth and Development, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.

出版信息

J Biol Chem. 2011 May 20;286(20):18048-55. doi: 10.1074/jbc.M111.232355. Epub 2011 Mar 8.

Abstract

Peroxiredoxins (Prx) are thiol peroxidases that exhibit exceptionally high reactivity toward peroxides, but the chemical basis for this is not well understood. We present strong experimental evidence that two highly conserved arginine residues play a vital role in this activity of human Prx2 and Prx3. Point mutation of either ArgI or ArgII (in Prx3 Arg-123 and Arg-146, which are ∼3-4 Å or ∼6-7 Å away from the active site peroxidative cysteine (C(p)), respectively) in each case resulted in a 5 orders of magnitude loss in reactivity. A further 2 orders of magnitude decrease in the second-order rate constant was observed for the double arginine mutants of both isoforms, suggesting a cooperative function for these residues. Detailed ab initio theoretical calculations carried out with the high level G4 procedure suggest strong catalytic effects of H-bond-donating functional groups to the C(p) sulfur and the reactive and leaving oxygens of the peroxide in a cooperative manner. Using a guanidinium cation in the calculations to mimic the functional group of arginine, we were able to locate two transition structures that indicate rate enhancements consistent with our experimentally observed rate constants. Our results provide strong evidence for a vital role of ArgI in activating the peroxide that also involves H-bonding to ArgII. This mechanism could explain the exceptional reactivity of peroxiredoxins toward H(2)O(2) and may have wider implications for protein thiol reactivity toward peroxides.

摘要

过氧化物酶(Prx)是对过氧化物表现出极高反应性的硫醇过氧化物酶,但对此的化学基础还不是很了解。我们提出了强有力的实验证据,表明两个高度保守的精氨酸残基在人 Prx2 和 Prx3 的这种活性中起着至关重要的作用。在每种情况下,点突变 ArgI 或 ArgII(在 Prx3 的 Arg-123 和 Arg-146 中,分别距离活性位点过氧化物半胱氨酸(C(p))约 3-4 Å 或约 6-7 Å),反应性都降低了 5 个数量级。两种同工酶的双精氨酸突变体的二级速率常数进一步降低了 2 个数量级,表明这些残基具有协同功能。使用 G4 程序进行的详细从头计算表明,氢键供体官能团以协同方式对 C(p)硫和过氧化物的反应性和离去氧具有强烈的催化作用。在计算中使用胍阳离子来模拟精氨酸的官能团,我们能够定位两个过渡态结构,表明与我们观察到的实验速率常数一致的速率增强。我们的结果为 ArgI 在激活过氧化物中所起的重要作用提供了有力的证据,这也涉及到与 ArgII 的氢键。这种机制可以解释过氧化物酶对 H2O2 的异常反应性,并且可能对蛋白质巯基对过氧化物的反应性具有更广泛的影响。

相似文献

1
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study.
J Biol Chem. 2011 May 20;286(20):18048-55. doi: 10.1074/jbc.M111.232355. Epub 2011 Mar 8.
2
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29.
3
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.
Antioxid Redox Signal. 2018 Mar 1;28(7):521-536. doi: 10.1089/ars.2016.6922. Epub 2017 Apr 4.
4
Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation.
J Biol Chem. 2013 Oct 11;288(41):29714-23. doi: 10.1074/jbc.M113.473470. Epub 2013 Sep 3.
5
Factors affecting protein thiol reactivity and specificity in peroxide reduction.
Chem Res Toxicol. 2011 Apr 18;24(4):434-50. doi: 10.1021/tx100413v. Epub 2011 Mar 10.
6
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
7
Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation.
Biochem J. 2016 Feb 15;473(4):411-21. doi: 10.1042/BJ20150572. Epub 2015 Nov 27.
8
Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.
9
The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.
10
The Role of Peroxiredoxins in the Transduction of HO Signals.
Antioxid Redox Signal. 2018 Mar 1;28(7):537-557. doi: 10.1089/ars.2017.7167. Epub 2017 Jul 10.

引用本文的文献

1
Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin.
Antioxidants (Basel). 2025 Feb 18;14(2):235. doi: 10.3390/antiox14020235.
2
Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis.
Adv Cancer Res. 2024;162:1-44. doi: 10.1016/bs.acr.2024.04.001. Epub 2024 May 3.
3
Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte.
Antioxidants (Basel). 2023 Apr 27;12(5):1012. doi: 10.3390/antiox12051012.
5
Auranofin and Pharmacologic Ascorbate as Radiomodulators in the Treatment of Pancreatic Cancer.
Antioxidants (Basel). 2022 May 14;11(5):971. doi: 10.3390/antiox11050971.
7
Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2.
J Biol Chem. 2021 Jan-Jun;296:100494. doi: 10.1016/j.jbc.2021.100494. Epub 2021 Mar 2.
8
A curious case of cysteines in human peroxiredoxin I.
Redox Biol. 2020 Oct;37:101738. doi: 10.1016/j.redox.2020.101738. Epub 2020 Sep 24.
9
Sulfur Metabolism Under Stress.
Antioxid Redox Signal. 2020 Dec 1;33(16):1158-1173. doi: 10.1089/ars.2020.8151. Epub 2020 Aug 14.
10
Immunological Techniques to Assess Protein Thiol Redox State: Opportunities, Challenges and Solutions.
Antioxidants (Basel). 2020 Apr 15;9(4):315. doi: 10.3390/antiox9040315.

本文引用的文献

1
Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins.
Antioxid Redox Signal. 2011 Aug 1;15(3):795-815. doi: 10.1089/ars.2010.3624. Epub 2011 Apr 20.
3
Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization.
J Mol Biol. 2010 Sep 10;402(1):194-209. doi: 10.1016/j.jmb.2010.07.022. Epub 2010 Jul 17.
4
Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.
Acc Chem Res. 2010 May 18;43(5):642-51. doi: 10.1021/ar900260c.
5
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling.
Biochem J. 2009 Dec 23;425(2):313-25. doi: 10.1042/BJ20091541.
6
Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide.
J Biochem. 2010 Jan;147(1):109-15. doi: 10.1093/jb/mvp154. Epub 2009 Oct 9.
7
Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2.
Free Radic Biol Med. 2009 Nov 15;47(10):1468-76. doi: 10.1016/j.freeradbiomed.2009.08.022. Epub 2009 Aug 27.
8
Redox potential and peroxide reactivity of human peroxiredoxin 3.
Biochemistry. 2009 Jul 14;48(27):6495-501. doi: 10.1021/bi900558g.
9
Cysteine pK(a) values for the bacterial peroxiredoxin AhpC.
Biochemistry. 2008 Dec 2;47(48):12860-8. doi: 10.1021/bi801718d.
10
The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling.
Antioxid Redox Signal. 2008 Sep;10(9):1565-76. doi: 10.1089/ars.2008.2049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验