Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
Mol Syst Biol. 2011 Apr 26;7:485. doi: 10.1038/msb.2011.19.
Precise control of cell proliferation is fundamental to tissue homeostasis and differentiation. Mammalian cells commit to proliferation at the restriction point (R-point). It has long been recognized that the R-point is tightly regulated by the Rb-E2F signaling pathway. Our recent work has further demonstrated that this regulation is mediated by a bistable switch mechanism. Nevertheless, the essential regulatory features in the Rb-E2F pathway that create this switching property have not been defined. Here we analyzed a library of gene circuits comprising all possible link combinations in a simplified Rb-E2F network. We identified a minimal circuit that is able to generate robust, resettable bistability. This minimal circuit contains a feed-forward loop coupled with a mutual-inhibition feedback loop, which forms an AND-gate control of the E2F activation. Underscoring its importance, experimental disruption of this circuit abolishes maintenance of the activated E2F state, supporting its importance for the bistability of the Rb-E2F system. Our findings suggested basic design principles for the robust control of the bistable cell cycle entry at the R-point.
精确控制细胞增殖是组织稳态和分化的基础。哺乳动物细胞在限制点(R 点)决定是否进行增殖。长期以来,人们一直认为 R 点受到 Rb-E2F 信号通路的严格调控。我们最近的工作进一步表明,这种调控是通过双稳态开关机制介导的。然而,在 Rb-E2F 通路中,构成这种开关特性的基本调节特征尚未确定。在这里,我们分析了一个基因回路文库,其中包含简化的 Rb-E2F 网络中的所有可能的连接组合。我们确定了一个能够产生稳健、可重置双稳态的最小电路。这个最小的电路包含一个前馈回路和一个相互抑制的反馈回路,它形成了 E2F 激活的与门控制。这个电路的重要性不言而喻,实验破坏这个电路会消除激活的 E2F 状态的维持,这支持了它对于 Rb-E2F 系统的双稳态的重要性。我们的发现为在 R 点精确控制双稳态细胞周期进入提供了基本的设计原则。