Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
J Biol Chem. 2011 Jun 24;286(25):22372-83. doi: 10.1074/jbc.M111.233908. Epub 2011 Apr 29.
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.
在细菌中,RuvABC 是同源重组过程中 Holliday 连接(HJ)的分辨率所必需的。RuvAB 复合物催化 HJ 分支迁移和复制叉反转(RFR)。在 RFR 过程中,停滞的叉被反转形成与 DNA 双链末端相邻的 HJ,该反应需要某些大肠杆菌复制突变体中的 RuvAB。由于仍然不清楚在分支迁移和 RFR 过程中是否有一个或两个 RuvA 四聚体支持 RuvB,因此活性 RuvAB 复合物的确切结构仍然难以捉摸。我们设计了一种大肠杆菌 RuvA 突变体 RuvA2(KaP),专门削弱 RuvA 四聚体-四聚体相互作用。正如预期的那样,尽管该突变蛋白在 HJ 上形成复合物 II(两个四聚体)的效率受损,但复合物 I(一个四聚体)的结合效率与野生型相同。我们表明,尽管 RuvA 复合物 II 的形成对于体外高效 HJ 分支迁移是必需的,但 RuvA2(KaP) 在体内同源重组中是完全活跃的。RuvA2(KaP) 在合成复制叉上也无法形成复合物 II,并且与野生型相比,RuvA2(KaP) 与叉的结合亲和力降低。因此,RuvA2(KaP) 在体外和体内都不能有效地处理叉。这些数据表明,RuvA2(KaP) 是一种分离功能突变体,能够进行同源重组,但 RFR 受损。RuvA2(KaP) 无法刺激 RuvB 活性,并且 HJ·RuvA·RuvB 三元复合物的稳定性降低。这项工作表明,RuvAB 体外全活性对 RuvA 四聚体-四聚体相互作用的需求导致体内 RFR 缺陷。