From the Departments of Microbiology and Immunology and.
J Biol Chem. 2013 Sep 13;288(37):26397-409. doi: 10.1074/jbc.M113.500223. Epub 2013 Jul 27.
RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To clarify the roles of these proteins in fork regression, we used a coupled spectrophotometric ATPase assay to determine how these helicases act on two groups of model fork substrates: the first group mimics nascent stalled forks, whereas the second mimics regressed fork structures. The results show that RecG is active on the substrates in group 1, whereas these are poor substrates for RuvAB. In addition, in the presence of group 1 forks, the single-stranded DNA-binding protein (SSB) enhances the activity of RecG and enables it to compete with excess RuvA. In contrast, SSB inhibits the activity of RuvAB on these substrates. Results also show that the preferred regressed fork substrate for RuvAB is a Holliday junction, not a forked DNA. The active form of the enzyme on the Holliday junction contains a single RuvA tetramer. In contrast, although the enzyme is active on a regressed fork structure, RuvB loading by a single RuvA tetramer is impaired, and full activity requires the cooperative binding of two forked DNA substrate molecules. Collectively, the data support a model where RecG is responsible for stalled DNA replication fork regression. SSB ensures that if the nascent fork has single-stranded DNA character RuvAB is inhibited, whereas the activity of RecG is preferentially enhanced. Only once the fork has been regressed and the DNA is relaxed can RuvAB bind to a RecG-extruded Holliday junction.
RecG 和 RuvAB 被认为在停滞的 DNA 复制叉处发挥作用,以促进复制重新启动。为了阐明这些蛋白质在叉回归中的作用,我们使用偶联分光光度 ATP 酶测定法来确定这些解旋酶如何作用于两组模型叉底物:第一组模拟新生停滞的叉,而第二组模拟回归的叉结构。结果表明,RecG 在第一组底物上具有活性,而这些底物对 RuvAB 是较差的底物。此外,在存在第一组叉的情况下,单链结合蛋白(SSB)增强了 RecG 的活性,并使其能够与过量的 RuvA 竞争。相比之下,SSB 抑制了 RuvAB 在这些底物上的活性。结果还表明,RuvAB 首选的回归叉底物是 Holliday 连接,而不是分叉 DNA。该酶在 Holliday 连接上的活性形式包含单个 RuvA 四聚体。相比之下,尽管该酶在回归叉结构上具有活性,但单个 RuvA 四聚体的 RuvB 加载受到损害,并且完全活性需要两个分叉 DNA 底物分子的协同结合。总的来说,这些数据支持了 RecG 负责停滞的 DNA 复制叉回归的模型。SSB 确保如果新生叉具有单链 DNA 特征,则 RuvAB 被抑制,而 RecG 的活性则被优先增强。只有当叉已经回归并且 DNA 被松弛时,RuvAB 才能结合到 RecG 逐出的 Holliday 连接上。