Suppr超能文献

基于 DNA 自由能的启动子预测及拟南芥和水稻基因组的比较分析。

DNA free energy-based promoter prediction and comparative analysis of Arabidopsis and rice genomes.

机构信息

Indian Institute of Science, Bangalore 560 012, India.

出版信息

Plant Physiol. 2011 Jul;156(3):1300-15. doi: 10.1104/pp.110.167809. Epub 2011 Apr 29.

Abstract

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.

摘要

DNA 上的顺式调控区充当蛋白质(如转录因子和 RNA 聚合酶)的结合位点。这些蛋白质的组合相互作用在转录起始中起着至关重要的作用,这是基因表达调控的一个重要控制点。我们在此提出了一种基于 DNA 融解自由能的算法,用于预测拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)植物基因组中顺式调控区的分析。对于编码蛋白质的基因,我们分别实现了 96%和 42%的召回率和 42%的精度,以及 97%和 31%的召回率和 31%的精度。对于非编码 RNA 基因,该程序分别给出了 94%和 75%的召回率和 90%的精度,以及 95%和 90%的精度。此外,96%的假阳性预测位于初级转录物的非编码区,其中 20%仅位于第一个内含子中,表明可能具有调节作用。来自两个基因组的同源基因的预测在预测分数和启动子组织方面具有很好的相关性。将我们的结果与现有的植物基因组启动子预测程序进行比较表明,我们的方法显示出了改进的预测能力。

相似文献

9
Comparative analysis of microRNA promoters in Arabidopsis and rice.拟南芥和水稻中 microRNA 启动子的比较分析。
Genomics Proteomics Bioinformatics. 2013 Feb;11(1):56-60. doi: 10.1016/j.gpb.2012.12.004. Epub 2013 Jan 11.

引用本文的文献

6
Delving into Eukaryotic Origins of Replication Using DNA Structural Features.利用DNA结构特征深入探究真核生物复制起点
ACS Omega. 2020 Jun 1;5(23):13601-13611. doi: 10.1021/acsomega.0c00441. eCollection 2020 Jun 16.

本文引用的文献

2
High-quality annotation of promoter regions for 913 bacterial genomes.对 913 个细菌基因组的启动子区域进行高质量注释。
Bioinformatics. 2010 Dec 15;26(24):3043-50. doi: 10.1093/bioinformatics/btq577. Epub 2010 Oct 17.
6
Genome sequence of the palaeopolyploid soybean.古多倍体大豆基因组序列。
Nature. 2010 Jan 14;463(7278):178-83. doi: 10.1038/nature08670.
8
Finding human promoter groups based on DNA physical properties.基于DNA物理特性寻找人类启动子组。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041917. doi: 10.1103/PhysRevE.80.041917. Epub 2009 Oct 13.
9
Ensembl Genomes: extending Ensembl across the taxonomic space.Ensembl Genomes:在分类学空间中扩展 Ensembl。
Nucleic Acids Res. 2010 Jan;38(Database issue):D563-9. doi: 10.1093/nar/gkp871. Epub 2009 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验