Li Lifeng, Granet Gérard
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
J Opt Soc Am A Opt Image Sci Vis. 2011 May 1;28(5):738-46. doi: 10.1364/JOSAA.28.000738.
We mathematically prove and numerically demonstrate that the source of the convergence problem of the analytical modal method and the Fourier modal method for modeling some lossless metal-dielectric lamellar gratings in TM polarization recently reported by Gundu and Mafi [J. Opt. Soc. Am. A 27, 1694 (2010)] is the existence of irregular field singularities at the edges of the grating grooves. We show that Fourier series are incapable of representing the transverse electric field components in the vicinity of an edge of irregular field singularity; therefore, any method, not necessarily of modal type, using Fourier series in this way is doomed to fail. A set of precise and simple criteria is given with which, given a lamellar grating, one can predict whether the conventional implementation of a modal method of any kind will converge without running a convergence test.
我们通过数学证明和数值演示表明,Gundu和Mafi最近报道的[《美国光学学会志A》27, 1694 (2010)]用于模拟某些TM偏振无损金属 - 电介质层状光栅的解析模态方法和傅里叶模态方法收敛问题的根源在于光栅槽边缘存在不规则场奇点。我们表明傅里叶级数无法表示不规则场奇点边缘附近的横向电场分量;因此,任何以这种方式使用傅里叶级数的方法,不一定是模态类型的方法,注定会失败。给出了一组精确且简单的准则,利用这些准则,给定一个层状光栅,无需进行收敛测试就可以预测任何一种模态方法的传统实现是否会收敛。