Gundu Krishna Mohan, Mafi Arash
Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, USA.
J Opt Soc Am A Opt Image Sci Vis. 2010 Nov 1;27(11):2375-80. doi: 10.1364/JOSAA.27.002375.
In a recent article [J. Opt. Soc. Am. A27, 1694 (2010)], we proposed a rectangular truncation method to mitigate the convergence problems arising from the boundary matching conditions of a binary metallic grating. The proposed method may underestimate the total power in the scattered field for certain grating parameters. In this article, we extend this method to preserve the total power by introducing appropriate constraints and solving the resulting problem as a constrained least squares minimization problem. We provide examples to show that the new method provides a convergent solution for both lossy and lossless binary metallic gratings while preserving the total power.
在最近的一篇文章[《美国光学学会志A》27, 1694 (2010)]中,我们提出了一种矩形截断方法,以减轻由二元金属光栅的边界匹配条件引起的收敛问题。对于某些光栅参数,所提出的方法可能会低估散射场中的总功率。在本文中,我们扩展了该方法,通过引入适当的约束并将所得问题作为约束最小二乘最小化问题来求解,以保持总功率。我们提供了示例,表明新方法对于有损和无损二元金属光栅都能提供收敛解,同时保持总功率。