Anderson Jill T, Mitchell-Olds Thomas
Institute for Genome Sciences and Policy, Department of Biology, Duke University, P.O. Box 90338, Durham, North Carolina 27708, USA.
Funct Ecol. 2011 Apr;25(2):312-324. doi: 10.1111/j.1365-2435.2010.01785.x.
Herbivores exert significant selection on plants, and plants have evolved a variety of constitutive and inducible defenses to resist and tolerate herbivory. Assessing the genetic mechanisms that influence defenses against herbivores will deepen our understanding of the evolution of essential phenotypic traits.Ecogenomics is a powerful interdisciplinary approach that can address fundamental questions about the ecology and evolutionary biology of species, such as: which evolutionary forces maintain variation within a population? and What is the genetic architecture of adaptation? This field seeks to identify gene regions that influence ecologically-important traits, assess the fitness consequences under natural conditions of alleles at key quantitative trait loci (QTLs), and test how the abiotic and biotic environment affects gene expression.Here, we review ecogenomics techniques and emphasize how this framework can address long-standing and emerging questions relating to anti-herbivore defenses in plants. For example, ecogenomics tools can be used to investigate: inducible vs. constitutive defenses; tradeoffs between resistance and tolerance; adaptation to the local herbivore community; selection on alleles that confer resistance and tolerance in natural populations; and whether different genes are activated in response to specialist vs. generalist herbivores and to different types of damage.Ecogenomic studies can be conducted with model species, such as Arabidopsis, or their relatives, in which case myriad molecular tools are already available. Burgeoning sequence data will also facilitate ecogenomic studies of non-model species. Throughout this paper, we highlight approaches that are particularly suitable for ecological studies of non-model organisms, discuss the benefits and disadvantages of specific techniques, and review bioinformatic tools for analyzing data.We focus on established and promising techniques, such as QTL mapping with pedigreed populations, genome wide association studies, transcription profiling strategies, population genomics, and transgenic methodologies. Many of these techniques are complementary and can be used jointly to investigate the genetic architecture of defense traits and selection on alleles in nature.
食草动物对植物施加了显著的选择作用,而植物也进化出了多种组成型和诱导型防御机制来抵抗和耐受食草行为。评估影响植物抗食草动物防御的遗传机制,将加深我们对重要表型性状进化的理解。生态基因组学是一种强大的跨学科方法,能够解决有关物种生态学和进化生物学的基本问题,例如:哪些进化力量维持了种群内的变异?以及适应的遗传结构是怎样的?该领域旨在识别影响生态重要性状的基因区域,评估关键数量性状位点(QTL)上等位基因在自然条件下的适合度后果,并测试非生物和生物环境如何影响基因表达。在此,我们回顾生态基因组学技术,并强调该框架如何能够解决与植物抗食草动物防御相关的长期存在的以及新出现的问题。例如,生态基因组学工具可用于研究:诱导型防御与组成型防御;抗性与耐受性之间的权衡;对当地食草动物群落的适应;自然种群中赋予抗性和耐受性的等位基因的选择;以及针对专食性与广食性食草动物以及不同类型损伤时,是否会激活不同的基因。生态基因组学研究可以使用模式物种,如拟南芥或其近缘物种来进行,在这种情况下已经有大量的分子工具可用。快速增长的序列数据也将促进对非模式物种的生态基因组学研究。在整篇论文中,我们突出特别适合非模式生物生态学研究的方法,讨论特定技术的优缺点,并回顾用于分析数据的生物信息学工具。我们聚焦于已确立的和有前景的技术,如利用谱系群体进行QTL定位、全基因组关联研究、转录谱分析策略、群体基因组学和转基因方法。这些技术中的许多是互补的,可以联合使用来研究防御性状的遗传结构以及自然环境中等位基因的选择。