Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America.
PLoS Genet. 2011 Apr;7(4):e1001370. doi: 10.1371/journal.pgen.1001370. Epub 2011 Apr 21.
The gaseous hormone ethylene is one of the master regulators of development and physiology throughout the plant life cycle. Ethylene biosynthesis is stringently regulated to permit maintenance of low levels during most phases of vegetative growth but to allow for rapid peaks of high production at developmental transitions and under stress conditions. In most tissues ethylene is a negative regulator of cell expansion, thus low basal levels of ethylene biosynthesis in dark-grown seedlings are critical for optimal cell expansion during early seedling development. The committed steps in ethylene biosynthesis are performed by the enzymes 1-aminocyclopropane 1-carboxylate synthase (ACS) and 1-aminocyclopropane 1-carboxylate oxidase (ACO). The abundance of different ACS enzymes is tightly regulated both by transcriptional control and by post-translational modifications and proteasome-mediated degradation. Here we show that specific ACS isozymes are targets for regulation by protein phosphatase 2A (PP2A) during Arabidopsis thaliana seedling growth and that reduced PP2A function causes increased ACS activity in the roots curl in 1-N-naphthylphthalamic acid 1 (rcn1) mutant. Genetic analysis reveals that ethylene overproduction in PP2A-deficient plants requires ACS2 and ACS6, genes that encode ACS proteins known to be stabilized by phosphorylation, and proteolytic turnover of the ACS6 protein is retarded when PP2A activity is reduced. We find that PP2A and ACS6 proteins associate in seedlings and that RCN1-containing PP2A complexes specifically dephosphorylate a C-terminal ACS6 phosphopeptide. These results suggest that PP2A-dependent destabilization requires RCN1-dependent dephosphorylation of the ACS6 C-terminus. Surprisingly, rcn1 plants exhibit decreased accumulation of the ACS5 protein, suggesting that a regulatory phosphorylation event leads to ACS5 destabilization. Our data provide new insight into the circuitry that ensures dynamic control of ethylene synthesis during plant development, showing that PP2A mediates a finely tuned regulation of overall ethylene production by differentially affecting the stability of specific classes of ACS enzymes.
气态激素乙烯是植物生命周期中发育和生理的主要调节剂之一。乙烯的生物合成受到严格调控,以允许在大多数营养生长阶段维持低水平,但在发育转变和胁迫条件下允许快速产生高产量。在大多数组织中,乙烯是细胞扩张的负调节剂,因此在黑暗中生长的幼苗中,乙烯生物合成的基础水平较低对于早期幼苗发育期间的最佳细胞扩张至关重要。乙烯生物合成的关键步骤是由 1-氨基环丙烷 1-羧酸合酶(ACS)和 1-氨基环丙烷 1-羧酸氧化酶(ACO)完成的。不同 ACS 酶的丰度受到转录控制和翻译后修饰以及蛋白酶体介导的降解的严格调节。在这里,我们表明在拟南芥幼苗生长过程中,特定的 ACS 同工酶是蛋白磷酸酶 2A(PP2A)调节的靶标,并且在 1-N-萘基邻苯二甲酰亚胺 1(rcn1)突变体中,PP2A 功能降低会导致根卷曲中 ACS 活性增加。遗传分析表明,PP2A 缺陷型植物中乙烯的过度产生需要 ACS2 和 ACS6,这两个基因编码已知通过磷酸化稳定的 ACS 蛋白,并且当 PP2A 活性降低时,ACS6 蛋白的蛋白水解周转会延迟。我们发现 PP2A 和 ACS6 蛋白在幼苗中相互作用,并且含有 RCN1 的 PP2A 复合物特异性地去磷酸化 ACS6 C 端的一个磷酸肽。这些结果表明,PP2A 依赖性失稳需要 RCN1 依赖性去磷酸化 ACS6 C 端。令人惊讶的是,rcn1 植物表现出 ACS5 蛋白积累减少,表明调节性磷酸化事件导致 ACS5 失稳。我们的数据为确保植物发育过程中乙烯合成的动态控制提供了新的见解,表明 PP2A 通过差异影响特定 ACS 酶类的稳定性来介导对整体乙烯产生的精细调节。