Dipartimento di scienze di base e applicate per l'ingegneria, Università di Roma La Sapienza, via A. Scarpa 16, Roma, Italy.
Opt Lett. 2011 May 1;36(9):1701-3. doi: 10.1364/OL.36.001701.
Geometric optics can be completely derived from Fermat's principle, as classical mechanics can be obtained by the application of the Hamilton principle. In Lagrangian optics, for optical systems with rotational symmetry, is known the invariant L₃, the Lagrange optical invariant. For systems built only with spherical lenses, we demonstrate there are two other optical invariants, L₁ and L₂, analogous to L₃. A proof based on Snell's law, the Weierstrass-Erdman jump condition, and the expression of the ray between two optical surfaces in the Hamiltonian formalism is reported. The presence of a conserved vector, L, allows us to write the equation of an emerging ray without any approximation.
几何光学可以完全从费马原理推导出来,就像经典力学可以通过哈密顿原理的应用得到一样。在拉格朗日光学中,对于具有旋转对称性的光学系统,已知不变量 L₃,即拉格朗日光学不变量。对于仅由球形透镜构成的系统,我们证明存在另外两个光学不变量 L₁和 L₂,它们类似于 L₃。本文基于斯涅尔定律、魏尔斯特拉斯-埃尔德曼跃变条件以及哈密顿形式中两个光学表面之间光线的表达式,给出了一个证明。守恒向量 L 的存在使我们能够在不进行任何近似的情况下写出出射光线的方程。