Development and Aging Program, NASCR Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.
PLoS One. 2011 Apr 25;6(4):e18497. doi: 10.1371/journal.pone.0018497.
Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+)-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.
黑腹果蝇正在成为研究心脏疾病的强大模型系统。建立果蝇心脏的肽和蛋白质图谱是实施蛋白质网络研究的核心,这将使我们能够评估果蝇心脏发病机制的特征,并在系统水平上衡量与人类疾病机制的保守程度。使用凝胶-LC-MS/MS 方法,我们从 145 个分离的成年果蝇心脏中鉴定出 1228 个蛋白质簇。收缩、细胞结构和线粒体蛋白最为丰富,与果蝇心脏管的电子显微镜照片一致。功能/本体论富集分析进一步表明,参与糖酵解、Ca(2+)-结合、氧化还原和 G 蛋白信号转导等过程的蛋白质也过表达。与小鼠心脏蛋白质组的比较显示,在分子功能、生物过程和细胞成分水平上具有保守性。现存的肽组包括 5169 个不同的心脏相关肽,其中 1293 个(25%)在最近的果蝇肽简编中没有被鉴定出来。PeptideClassifier 分析进一步用于将肽映射到特定的基因模型。1872 个肽提供了有关蛋白质同工型组的有价值的信息,而另外 3112 个肽则独特地鉴定了特定的蛋白质同工型,可以作为基于多重反应监测的定量蛋白质组学方法的心脏相关肽资源。总之,鉴定兴奋-收缩蛋白标志物、与心血管缺陷相关的蛋白质的同源物以及蛋白质本体论的保守性,证明了果蝇心脏管具有类似心脏的特征,以及蛋白质组学作为遗传力在这个不断发展的人类心脏病模型中的补充的实用性。