Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
Stem Cells. 2010 Aug;28(8):1355-67. doi: 10.1002/stem.465.
Transplantation of pluripotent stem cells has proven beneficial in heart failure, yet the proteomic landscape underlying repair remains largely uncharacterized. In a genetic model of dilated cardiomyopathy elicited by pressure overload in the KCNJ11 (potassium inwardly rectifying channel, subfamily J, member 11) null mutant, proteome-wide profiles were here resolved by means of a systems approach prior to and following disease manifestation in the absence or presence of embryonic stem cell treatment. Comparative two-dimensional gel electrophoresis revealed a unique cardiomyopathic proteome in the absence of therapy, remodeled in response to stem cell treatment. Specifically, linear ion trap quadrupole-Orbitrap mass spectrometry determined the identities of 93 and 109 differentially expressed proteins from treated and untreated cardiomyopathic hearts, respectively. Mapped protein-protein relationships and corresponding neighborhoods incorporated the stem cell-dependent subproteome into a nonstochastic network with divergent composition from the stem cell-independent counterpart. Stem cell intervention produced a distinct proteome signature across a spectrum of biological processes ranging from energetic metabolism, oxidoreductases, and stress-related chaperones to processes supporting protein synthesis/degradation, signaling, and transport regulation, cell structure and scaffolding. In the absence of treatment, bioinformatic interrogation of the disease-only proteome network prioritized adverse cardiac outcomes, ablated or ameliorated following stem cell transplantation. Functional and structural measurements validated improved myocardial contractile performance, reduced ventricular size and decreased cardiac damage in the treated cohort. Unbiased systems assessment unmasked "cardiovascular development" as a prioritized biological function in stem cell-reconstructed cardiomyopathic hearts. Thus, embryonic stem cell treatment transformed the cardiomyopathic proteome to demote disease-associated adverse effects and sustain a procardiogenic developmental response, supplying a regenerative substrate for heart failure repair.
多能干细胞移植已被证明对心力衰竭有益,但修复的蛋白质组学基础在很大程度上仍未得到描述。在 KCNJ11(内向整流钾通道,亚家族 J,成员 11)缺失突变体的压力超负荷诱导的扩张型心肌病的遗传模型中,通过系统方法在疾病表现之前和之后解决了蛋白质组的全谱,而不存在或存在胚胎干细胞治疗的情况下。比较二维凝胶电泳显示,在没有治疗的情况下存在独特的心肌病蛋白质组,可响应干细胞治疗进行重塑。具体来说,线性离子阱四极杆-Orbitrap 质谱法确定了分别来自治疗和未治疗的心肌病心脏的 93 和 109 个差异表达蛋白的身份。映射的蛋白质-蛋白质关系和相应的邻域将干细胞依赖性亚蛋白质组纳入具有与干细胞非依赖性对应物不同组成的非随机网络中。干细胞干预产生了一系列生物学过程的独特蛋白质组特征,从能量代谢、氧化还原酶和应激相关伴侣到支持蛋白质合成/降解、信号转导和运输调节、细胞结构和支架的过程。在没有治疗的情况下,对仅疾病蛋白质组网络的生物信息学分析优先考虑了不良的心脏结局,并在干细胞移植后被消除或改善。功能和结构测量验证了在治疗组中改善的心肌收缩性能、减小的心室大小和减少的心脏损伤。无偏系统评估揭示了“心血管发育”作为干细胞重建的心肌病心脏中的优先生物学功能。因此,胚胎干细胞治疗改变了心肌病蛋白质组,以降低与疾病相关的不良影响并维持有利于心脏发育的反应,为心力衰竭修复提供了再生基质。