Suppr超能文献

相干态、纠缠和复制进化选择去相干异构体的量子信息处理分子钟。

The molecular clock in terms of quantum information processing of coherent states, entanglement and replication of evolutionarily selected decohered isomers.

机构信息

International Physics Health & Energy, Inc., 5109 82nd Street Suite 7, Lubbock, Texas 79424, USA.

出版信息

Interdiscip Sci. 2011 Jun;3(2):91-109. doi: 10.1007/s12539-011-0065-x. Epub 2011 May 4.

Abstract

Evolutionary pressures have selected quantum uncertainty limits -ΔxΔp ( x ) ≥ 1/2ħ-to operate on metastable amino DNA protons. This introduces a probability of molecular clock arrangement, keto-amino → enol-imine, where product protons are entangled and participate in coupled quantum oscillation at frequencies of ∼ 10(13) s(-1). The ket "seen by" the transcriptase, reading a coherent enol-imine G'-state, is |φ >= α| + + > +β|+- > +γ|-+ > +δ|-->. The transcriptase implements its measurement and generates an output qubit of observable genetic specificity information in an interval Δt ≪ 10(-13) s. These quantum measurements can specify the relative distribution of coherent G'-C' states at time of measurement. The ensuing quantum entanglement between coherent protons and transcriptase units is utilized as a resource to generate proper decoherence and introduce selected time-dependent substitutions, ts, and deletions, td. Topal-Fresco ts are G'202 → T, G'002 → C, *G020(0) → A and *C202(2) → T, whereas td are exhibited at coherent *A-*T sites. Variation in clock 'tic-rate' is a consequence of clock introduction of initiation codons - UUG, CUG, AUG, GUG - and stop codons, UAA, UAG, UGA. Using approximate quantum methods for times t < ∼ 100 y, the probability, P(t), of keto-amino → enolimine arrangement is P ( ρ )(t) = 1/2(γ ( ρ )/ħ)(2) t (2) where γ ( ρ ) is the energy shift. This introduces a quantum Darwinian evolution model which provides insight into biological consequences of coherent states populating human genes, including inherited (CAG)( n ) repeat tracts.

摘要

进化压力选择了量子不确定性限制-ΔxΔp(x)≥1/2ħ-来作用于亚稳态氨基酸 DNA 质子。这引入了分子钟排列的概率,酮-氨基→烯醇-亚胺,其中产物质子纠缠在一起,并以约 10(13)s(-1)的频率参与耦合量子振荡。转录酶“看到”的酮是读相干烯醇-亚胺 G'-态的|φ>=α|++>+β|+->+γ|-+>+δ|-->。转录酶执行其测量,并在间隔Δt≪10(-13)s 内生成可观察遗传特异性信息的输出量子位。这些量子测量可以在测量时指定相干 G'-C'态的相对分布。随后,相干质子和转录酶单元之间的量子纠缠被用作资源,以产生适当的退相干并引入选定的时变取代,ts 和删除,td。Topal-Fresco ts 是 G'202→T、G'002→C、G020(0)→A 和C202(2)→T,而 td 则在相干A-*T 位点表现出来。时钟“滴答速率”的变化是由于时钟引入起始密码子-UUG、CUG、AUG、GUG-和终止密码子-UAA、UAG、UGA 的结果。使用近似量子方法,在 t<∼100y 的时间内,酮-氨基→烯醇亚胺排列的概率 P(t)为 P(ρ)(t)=1/2(γ(ρ)/ħ)(2)t(2),其中γ(ρ)是能量偏移。这引入了一种量子达尔文进化模型,为理解相干态在人类基因中占据的生物后果提供了线索,包括遗传(CAG)(n)重复片段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验