Cooper W G
International Physics Health & Energy, Inc., Houston, Texas 77030, USA.
Biochem Genet. 1994 Dec;32(11-12):383-95. doi: 10.1007/BF00566059.
A physical interpretation of the Topal-Fresco [Nature 263, 285 (1976)] model for spontaneous base substitutions suggests that hydrogen-bonded DNA protons satisfy the criteria for a classical noninteracting isolated system. Accessible states for duplex G-C protons include the keto-amino state and the six complementary enol-imine isomers. Hydrogen-bonded enol and imine protons occupy symmetric double-minima created by the two sets of indistinguishable electron lone pairs and a single proton belonging to each enol-imine end group. These protons will consequently participate in coupled quantum mechanical flip-flop, tunneling back and forth between symmetric energy wells. This results in a quantum mixing of proton energy states where the lowest energy state will be a linear combination of available G-C isomers. The resulting conclusion is that metastable keto-amino G-C protons will populate accessible enol-imine stationary states at rates governed by quantum laws of statistical equilibrium, consistent with achieving the lowest energy condition for duplex G-C protons. Enol-imine G-C stationary states are bound more tightly, of the order of 3 to 12 kcal/mol, which requires a modified mode of Topal-Fresco replication that will inhibit reequilibration of enol and imine G and C template isomers and, thus, promote the formation of complementary mispairs. The model is demonstrated on time-dependent base substitutions expressed by T4 phage DNA systems where data are consistent with model explanations, including the prediction that time-dependent evolutionary transversion sites will exhibit both G-C-to-T-A and G-C-to-C-G transversions at replication, due to proton flip-flop alteration of G template genetic specificity. The observation that A-T sites are resistant to time-dependent evolutionary base substitutions, expressed exclusively at G-C sites, allows codons to be classified as either evolutionary sensitive (16 codons) or evolutionary resistant (8 codons). These criteria provide possible explanations for expansion properties of the CGG fragile X sequences. Enol-imine G-C stationary states appear to have been misdiagnosed as deamination of cytosine and oxidation of guanine to 8-hydroxy-guanine.
托帕尔-弗雷斯科[《自然》263, 285 (1976)]自发碱基替换模型的物理解释表明,氢键结合的DNA质子满足经典非相互作用孤立系统的标准。双链G-C质子的可及状态包括酮-氨基状态和六种互补的烯醇-亚胺异构体。氢键结合的烯醇和亚胺质子占据由两组无法区分的电子孤对和属于每个烯醇-亚胺端基的单个质子产生的对称双势阱。因此,这些质子将参与耦合量子力学的翻转,在对称的能量阱之间来回隧穿。这导致质子能态的量子混合,其中最低能态将是可用G-C异构体的线性组合。由此得出的结论是,亚稳态的酮-氨基G-C质子将以统计平衡的量子定律所支配的速率填充可及的烯醇-亚胺稳态,这与实现双链G-C质子的最低能量条件一致。烯醇-亚胺G-C稳态结合更紧密,约为3至12千卡/摩尔,这需要一种修改后的托帕尔-弗雷斯科复制模式,该模式将抑制烯醇和亚胺G和C模板异构体的重新平衡,从而促进互补错配的形成。该模型在T4噬菌体DNA系统表达的时间依赖性碱基替换中得到了验证,其中数据与模型解释一致,包括预测时间依赖性进化颠换位点在复制时将同时出现G-C到T-A和G-C到C-G的颠换,这是由于G模板遗传特异性的质子翻转改变所致。观察到A-T位点对时间依赖性进化碱基替换具有抗性,仅在G-C位点出现,这使得密码子可以分为进化敏感型(16个密码子)或进化抗性型(8个密码子)。这些标准为CGG脆性X序列的扩展特性提供了可能的解释。烯醇-亚胺G-C稳态似乎被误诊为胞嘧啶脱氨和鸟嘌呤氧化为8-羟基鸟嘌呤。