Suppr超能文献

养分添加对三种沼泽灌木叶片化学特性、形态和光合能力的影响。

Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs.

机构信息

Environmental Studies Program, Mount Holyoke College, South Hadley, MA 01075, USA.

出版信息

Oecologia. 2011 Oct;167(2):355-68. doi: 10.1007/s00442-011-1998-9. Epub 2011 May 5.

Abstract

Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m(-2) a(-1). While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A(max)), carboxylation (V(cmax)), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A(max) for C. calyculata, and higher V(cmax) in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH(4)) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.

摘要

在养分贫瘠的环境中,植物通常具有较低的叶片氮(N)浓度、寿命长的组织和设计用于高效利用养分的叶片特征,以及较低的光合作用速率。我们推测,由于大气沉积增加氮的可利用性,会增加沼泽灌木的光合作用能力、叶片 N 和比叶面积(SLA)。我们在加拿大安大略省 Mer Bleue 沼泽的一项长期施肥实验中,测量了三种石南科灌木(Vaccinium myrtilloides、Ledum groenlandicum 和 Chamaedaphne calyculata)的光合作用、叶片化学特性和叶片形态,背景氮沉积为 0.8 g N m(-2) a(-1)。虽然 C. calyculata 在最高养分处理下的生物量和叶绿素浓度增加,但我们发现,随着养分(含或不含 PK 的 N)的添加,光饱和光合作用速率(A(max))、羧化(V(cmax))或 SLA 没有变化,除了 C. calyculata 的叶片 N 与 A(max)之间存在微弱的正相关,以及低养分添加下 L. groenlandicum 的 V(cmax)较高。我们发现光合作用 N 利用效率(PNUE)与叶片 N 之间存在负相关,同时伴随着一种或多种氨基酸的特异性增加,这可能是氮可利用性过剩的迹象,或是降低铵(NH(4))毒性的一种机制。我们还观察到叶片可溶性 Ca 和 Mg 浓度下降,这是植物生长所必需的矿物质,但聚胺没有变化,聚胺是在高氮积累条件下的生理应激指标。这些结果表明,适应低养分环境的植物不会将其资源分配转移到光合作用过程,即使达到氮充足的状态,而是将多余的氮储存在有机化合物中以备后用。从长远来看,沼泽物种可能无法利用升高的养分,从而被更适应更高养分环境的物种所取代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验