Suppr超能文献

Biosynthesis of the Na,K-ATPase in Madin-Darby canine kidney cells. Activation and cell surface delivery.

作者信息

Caplan M J, Forbush B, Palade G E, Jamieson J D

机构信息

Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510.

出版信息

J Biol Chem. 1990 Feb 25;265(6):3528-34.

PMID:2154482
Abstract

Madin-Darby canine kidney cells were used to study events in the postsynthetic processing and cell surface delivery of Na,K-ATPase. The photoactivable 2-nitro-5-azidobenzoyl (NAB) derivative of ouabain and an anti-ouabain antibody were employed in experiments designed to determine the time intervals required for newly synthesized Na,K-ATPase to achieve the capacity to bind ouabain and to arrive at the cell surface. Ouabain-binding capacity was assessed in Madin Darby canine kidney cells which were pulse-labeled with [35S]methionine. At various chase intervals cells were disrupted by probe sonication and the resultant vesicles were permeabilized. Vesicles were incubated with NAB-ouabain and, following UV photolysis, solubilized and subjected to immunoprecipitation with an anti-ouabain antibody. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates revealed that newly synthesized Na,K-ATPase can carry out type II (Mg2+ and Pi supported) ouabain binding throughout the course of its postsynthetic processing. In contrast, the ability to carry out type I (Na+, Mg2+, and ATP-supported) ouabain binding is not attained until 10 min after the completion of the sodium pump's synthesis. Experiments in which intact pulse-labeled cells were incubated with NAB-ouabain revealed that the Na,K-ATPase arrives at the cell surface as soon as 50 min after its synthesis. These results suggest that postsynthetic processing is required before the newly synthesized Na,K-ATPase can display its full repertoire of catalytic functions. This processing seems to be complete prior to the newly synthesized sodium pump's arrival at the cell surface.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验