Suppr超能文献

获取语境化概念:一种连接主义方法。

Acquiring contextualized concepts: a connectionist approach.

机构信息

Department of Psychology, Leiden University, The Netherlands.

出版信息

Cogn Sci. 2011 Aug;35(6):1162-89. doi: 10.1111/j.1551-6709.2011.01178.x. Epub 2011 May 4.

Abstract

Conceptual knowledge is acquired through recurrent experiences, by extracting statistical regularities at different levels of granularity. At a fine level, patterns of feature co-occurrence are categorized into objects. At a coarser level, patterns of concept co-occurrence are categorized into contexts. We present and test CONCAT, a connectionist model that simultaneously learns to categorize objects and contexts. The model contains two hierarchically organized CALM modules (Murre, Phaf, & Wolters, 1992). The first module, the Object Module, forms object representations based on co-occurrences between features. These representations are used as input for the second module, the Context Module, which categorizes contexts based on object co-occurrences. Feedback connections from the Context Module to the Object Module send activation from the active context to those objects that frequently occur within this context. We demonstrate that context feedback contributes to the successful categorization of objects, especially when bottom-up feature information is degraded or ambiguous.

摘要

概念知识是通过反复的经验获得的,通过在不同粒度级别提取统计规律。在精细级别上,特征共现模式被分类为对象。在更粗糙的级别上,概念共现模式被分类为上下文。我们提出并测试了 CONCAT,这是一种连接主义模型,可以同时学习分类对象和上下文。该模型包含两个层次组织的 CALM 模块(Murre、Phaf 和 Wolters,1992)。第一个模块,对象模块,根据特征之间的共现形成对象表示。这些表示被用作第二个模块,上下文模块的输入,该模块根据对象共现对上下文进行分类。来自上下文模块的反馈连接将来自活动上下文的激活发送到在该上下文中经常出现的对象。我们证明了上下文反馈有助于成功分类对象,特别是当自下而上的特征信息退化或不明确时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验