Institute for Genome Sciences and Policy and Biochemistry Department, Duke University, Durham, North Carolina 27710, USA.
Genetics. 2011 Jul;188(3):535-48. doi: 10.1534/genetics.111.129197. Epub 2011 May 5.
Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.
扩展的异染色质结构域对转录有抑制作用,有助于定义着丝粒和端粒,它是通过沉默蛋白和核小体之间的特异性相互作用形成的。这项研究揭示,在酿酒酵母中,相同的核小体表面对于多种类型的异染色质的形成是至关重要的,但对于相关转录抑制剂介导的局部抑制则不是必需的。因此,核小体的这个区域可能对长距离沉默具有普遍的重要性。在酿酒酵母中,Sir 蛋白执行长距离沉默,而 Sum1 复合物则局部作用以抑制特定基因。Sum1p 的一种突变形式 Sum1-1p 在没有 Sir 蛋白的情况下也能实现沉默。一项遗传筛选确定了组蛋白 H3 和 H4 中的突变,这些突变破坏了 Sum1-1 的沉默,并发生在先前已知会破坏 Sir 沉默和 rDNA 沉默的核小体区域。相比之下,没有发现破坏野生型 Sum1 抑制的突变。破坏沉默的突变发生在核小体的两个区域,H3 尾巴的尖端和核小体核心的一个表面(LRS 结构域)以及 H4 尾巴的相邻基底。LRS/H4 尾巴区域与 Sir3p 的溴相邻同源(BAH)结构域相互作用,以促进 Sir 沉默。类似地,这项研究与 LRS/H4 尾巴区域与 Orc1p 相互作用的结果一致,Orc1p 是 Sir3p 的一个旁系同源物,以促进 Sum1-1 沉默。因此,核小体的 LRS/H4 尾巴区域可能相对容易接近,并促进沉默蛋白和核小体之间的相互作用,以稳定长距离沉默。