Suppr超能文献

酵母中多种转录沉默所需的核小体区域。

A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.

机构信息

Institute for Genome Sciences and Policy and Biochemistry Department, Duke University, Durham, North Carolina 27710, USA.

出版信息

Genetics. 2011 Jul;188(3):535-48. doi: 10.1534/genetics.111.129197. Epub 2011 May 5.

Abstract

Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.

摘要

扩展的异染色质结构域对转录有抑制作用,有助于定义着丝粒和端粒,它是通过沉默蛋白和核小体之间的特异性相互作用形成的。这项研究揭示,在酿酒酵母中,相同的核小体表面对于多种类型的异染色质的形成是至关重要的,但对于相关转录抑制剂介导的局部抑制则不是必需的。因此,核小体的这个区域可能对长距离沉默具有普遍的重要性。在酿酒酵母中,Sir 蛋白执行长距离沉默,而 Sum1 复合物则局部作用以抑制特定基因。Sum1p 的一种突变形式 Sum1-1p 在没有 Sir 蛋白的情况下也能实现沉默。一项遗传筛选确定了组蛋白 H3 和 H4 中的突变,这些突变破坏了 Sum1-1 的沉默,并发生在先前已知会破坏 Sir 沉默和 rDNA 沉默的核小体区域。相比之下,没有发现破坏野生型 Sum1 抑制的突变。破坏沉默的突变发生在核小体的两个区域,H3 尾巴的尖端和核小体核心的一个表面(LRS 结构域)以及 H4 尾巴的相邻基底。LRS/H4 尾巴区域与 Sir3p 的溴相邻同源(BAH)结构域相互作用,以促进 Sir 沉默。类似地,这项研究与 LRS/H4 尾巴区域与 Orc1p 相互作用的结果一致,Orc1p 是 Sir3p 的一个旁系同源物,以促进 Sum1-1 沉默。因此,核小体的 LRS/H4 尾巴区域可能相对容易接近,并促进沉默蛋白和核小体之间的相互作用,以稳定长距离沉默。

相似文献

1
A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.
Genetics. 2011 Jul;188(3):535-48. doi: 10.1534/genetics.111.129197. Epub 2011 May 5.
2
Compensatory interactions between Sir3p and the nucleosomal LRS surface imply their direct interaction.
PLoS Genet. 2008 Dec;4(12):e1000301. doi: 10.1371/journal.pgen.1000301. Epub 2008 Dec 12.
3
Conversion of a gene-specific repressor to a regional silencer.
Genes Dev. 2001 Apr 15;15(8):955-67. doi: 10.1101/gad.873601.
4
Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae.
J Mol Biol. 2006 Mar 10;356(5):1082-92. doi: 10.1016/j.jmb.2005.11.089. Epub 2005 Dec 20.
5
Analyses of SUM1-1-mediated long-range repression.
Genetics. 2006 Jan;172(1):99-112. doi: 10.1534/genetics.105.050427. Epub 2005 Nov 4.
6
7
Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly.
Mol Cell. 2007 Dec 28;28(6):1015-28. doi: 10.1016/j.molcel.2007.12.004.
8
Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8495-500. doi: 10.1073/pnas.1300126110. Epub 2013 May 6.
9
Structure and function of the Orc1 BAH-nucleosome complex.
Nat Commun. 2019 Jul 1;10(1):2894. doi: 10.1038/s41467-019-10609-y.
10
Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly.
J Biol Chem. 2018 Feb 16;293(7):2498-2509. doi: 10.1074/jbc.RA117.000498. Epub 2017 Dec 29.

引用本文的文献

1
Regulation of telomere silencing by the core histones-autophagy-Sir2 axis.
Life Sci Alliance. 2022 Dec 30;6(3). doi: 10.26508/lsa.202201614. Print 2023 Mar.
3
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243.

本文引用的文献

1
Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure.
J Biol Chem. 2011 Apr 22;286(16):14659-69. doi: 10.1074/jbc.M110.183269. Epub 2011 Mar 9.
2
Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19384-9. doi: 10.1073/pnas.1006436107. Epub 2010 Oct 25.
3
A WD-repeat protein stabilizes ORC binding to chromatin.
Mol Cell. 2010 Oct 8;40(1):99-111. doi: 10.1016/j.molcel.2010.09.021.
4
Yin and Yang of histone H2B roles in silencing and longevity: a tale of two arginines.
Genetics. 2010 Nov;186(3):813-28. doi: 10.1534/genetics.110.118489. Epub 2010 Aug 16.
5
Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15093-8. doi: 10.1073/pnas.1009945107. Epub 2010 Aug 5.
8
TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres.
Mol Cell. 2009 Aug 28;35(4):403-13. doi: 10.1016/j.molcel.2009.06.025.
9
Human BAHD1 promotes heterochromatic gene silencing.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13826-31. doi: 10.1073/pnas.0901259106. Epub 2009 Aug 3.
10
Histone H3 N-terminus regulates higher order structure of yeast heterochromatin.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13153-9. doi: 10.1073/pnas.0906866106. Epub 2009 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验