Suppr超能文献

一种全面的形状描述符:方法及其在医学图像中基于内容检索相似外观病变的应用。

A comprehensive descriptor of shape: method and application to content-based retrieval of similar appearing lesions in medical images.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

J Digit Imaging. 2012 Feb;25(1):121-8. doi: 10.1007/s10278-011-9388-8.

Abstract

We have developed a method to quantify the shape of liver lesions in CT images and to evaluate its performance for retrieval of images with similarly-shaped lesions. We employed a machine learning method to combine several shape descriptors and defined similarity measures for a pair of shapes as a weighted combination of distances calculated based on each feature. We created a dataset of 144 simulated shapes and established several reference standards for similarity and computed the optimal weights so that the retrieval result agrees best with the reference standard. Then we evaluated our method on a clinical database consisting of 79 portal-venous-phase CT liver images, where we derived a reference standard of similarity from radiologists' visual evaluation. Normalized Discounted Cumulative Gain (NDCG) was calculated to compare this ordering with the expected ordering based on the reference standard. For the simulated lesions, the mean NDCG values ranged from 91% to 100%, indicating that our methods for combining features were very accurate in representing true similarity. For the clinical images, the mean NDCG values were still around 90%, suggesting a strong correlation between the computed similarity and the independent similarity reference derived the radiologists.

摘要

我们开发了一种方法来量化 CT 图像中肝脏病变的形状,并评估其用于检索具有相似形状病变的图像的性能。我们采用机器学习方法结合了几种形状描述符,并为一对形状定义了相似性度量,即将基于每个特征计算的距离的加权组合。我们创建了一个包含 144 个模拟形状的数据集,并为相似性建立了几个参考标准,并计算出最优权重,以使检索结果与参考标准最匹配。然后,我们在包含 79 个门静脉期 CT 肝脏图像的临床数据库上评估了我们的方法,我们从放射科医生的视觉评估中得出了相似性的参考标准。计算了归一化折扣累积增益(NDCG)以比较这种排序与基于参考标准的预期排序。对于模拟病变,平均 NDCG 值范围从 91%到 100%,这表明我们用于组合特征的方法在表示真实相似性方面非常准确。对于临床图像,平均 NDCG 值仍约为 90%,这表明计算出的相似性与放射科医生得出的独立相似性参考之间存在很强的相关性。

相似文献

2
Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results.
Radiology. 2010 Jul;256(1):243-52. doi: 10.1148/radiol.10091694. Epub 2010 May 26.
4
On combining image-based and ontological semantic dissimilarities for medical image retrieval applications.
Med Image Anal. 2014 Oct;18(7):1082-100. doi: 10.1016/j.media.2014.06.009. Epub 2014 Jul 2.
5
A similarity learning approach to content-based image retrieval: application to digital mammography.
IEEE Trans Med Imaging. 2004 Oct;23(10):1233-44. doi: 10.1109/TMI.2004.834601.
6
A retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans.
Acad Radiol. 2013 Dec;20(12):1526-34. doi: 10.1016/j.acra.2013.09.001.
8
[CT image retrieval of the liver with intrahepatic lesions].
Nan Fang Yi Ke Da Xue Xue Bao. 2011 Feb;31(2):221-5.
10

引用本文的文献

1
Exploring Radiomics for Classification of Supraglottic Tumors: A Pilot Study in a Tertiary Care Center.
Indian J Otolaryngol Head Neck Surg. 2023 Jun;75(2):433-439. doi: 10.1007/s12070-022-03239-2. Epub 2022 Nov 24.
3
Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats.
Cancer. 2018 Dec 15;124(24):4633-4649. doi: 10.1002/cncr.31630. Epub 2018 Nov 1.
4
Overview on subjective similarity of images for content-based medical image retrieval.
Radiol Phys Technol. 2018 Jun;11(2):109-124. doi: 10.1007/s12194-018-0461-6. Epub 2018 May 8.
5
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.
Neurocomputing (Amst). 2016 Feb 12;177:75-88. doi: 10.1016/j.neucom.2015.11.008. Epub 2015 Nov 17.
6
Content-based image retrieval in radiology: analysis of variability in human perception of similarity.
J Med Imaging (Bellingham). 2015 Apr;2(2):025501. doi: 10.1117/1.JMI.2.2.025501. Epub 2015 Apr 3.
7
A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations.
J Biomed Inform. 2014 Jun;49:227-44. doi: 10.1016/j.jbi.2014.02.018. Epub 2014 Mar 12.
8
Representation of lesion similarity by use of multidimensional scaling for breast masses on mammograms.
J Digit Imaging. 2013 Aug;26(4):740-7. doi: 10.1007/s10278-012-9569-0.
9
Automatic annotation of radiological observations in liver CT images.
AMIA Annu Symp Proc. 2012;2012:257-63. Epub 2012 Nov 3.

本文引用的文献

1
Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results.
Radiology. 2010 Jul;256(1):243-52. doi: 10.1148/radiol.10091694. Epub 2010 May 26.
2
Computer-aided image analysis of focal hepatic lesions in ultrasonography: preliminary results.
Abdom Imaging. 2009 Mar-Apr;34(2):183-91. doi: 10.1007/s00261-008-9383-9.
3
Classifying mammographic lesions using computerized image analysis.
IEEE Trans Med Imaging. 1993;12(4):664-9. doi: 10.1109/42.251116.
4
Integral invariants for shape matching.
IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1602-18. doi: 10.1109/TPAMI.2006.208.
5
The generalized LASSO.
IEEE Trans Neural Netw. 2004 Jan;15(1):16-28. doi: 10.1109/TNN.2003.809398.
6
7
Data explosion: the challenge of multidetector-row CT.
Eur J Radiol. 2000 Nov;36(2):74-80. doi: 10.1016/s0720-048x(00)00270-9.
8
Radiology's Achilles' heel: error and variation in the interpretation of the Röntgen image.
Br J Radiol. 1997 Nov;70(839):1085-98. doi: 10.1259/bjr.70.839.9536897.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验