School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
J Digit Imaging. 2012 Dec;25(6):708-19. doi: 10.1007/s10278-012-9495-1.
This paper is aimed at developing and evaluating a content-based retrieval method for contrast-enhanced liver computed tomographic (CT) images using bag-of-visual-words (BoW) representations of single and multiple phases. The BoW histograms are extracted using the raw intensity as local patch descriptor for each enhance phase by densely sampling the image patches within the liver lesion regions. The distance metric learning algorithms are employed to obtain the semantic similarity on the Hellinger kernel feature map of the BoW histograms. The different visual vocabularies for BoW and learned distance metrics are evaluated in a contrast-enhanced CT image dataset comprised of 189 patients with three types of focal liver lesions, including 87 hepatomas, 62 cysts, and 60 hemangiomas. For each single enhance phase, the mean of average precision (mAP) of BoW representations for retrieval can reach above 90 % which is significantly higher than that of intensity histogram and Gabor filters. Furthermore, the combined BoW representations of the three enhance phases can improve mAP to 94.5 %. These preliminary results demonstrate that the BoW representation is effective and feasible for retrieval of liver lesions in contrast-enhanced CT images.
本文旨在开发和评估一种基于内容的检索方法,用于使用单期和多期的基于视觉词汇包(BoW)表示来对增强型肝脏计算机断层扫描(CT)图像进行检索。使用原始强度作为局部补丁描述符,通过在肝脏病变区域内密集地采样图像补丁,从每个增强阶段的 BoW 直方图中提取 BoW 直方图。使用距离度量学习算法在 BoW 的 Hellinger 核特征图上获得语义相似性。在由 189 名具有三种类型的局灶性肝病变(包括 87 个肝癌、62 个囊肿和 60 个血管瘤)的患者组成的对比增强 CT 图像数据集上评估不同的 BoW 视觉词汇和学习的距离度量。对于每个单期增强,BoW 表示的平均精度(mAP)的平均精度(mAP)可达到 90%以上,明显高于强度直方图和 Gabor 滤波器。此外,三期增强的组合 BoW 表示可以将 mAP 提高到 94.5%。这些初步结果表明,BoW 表示对于在增强型 CT 图像中检索肝脏病变是有效和可行的。