Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063, USA.
Biochemistry. 2011 May 31;50(21):4623-37. doi: 10.1021/bi102033a. Epub 2011 May 6.
De novo purine biosynthesis proceeds by two divergent paths. In bacteria, yeasts, and plants, 5-aminoimidazole ribonucleotide (AIR) is converted to 4-carboxy-AIR (CAIR) by two enzymes: N(5)-carboxy-AIR (N(5)-CAIR) synthetase (PurK) and N(5)-CAIR mutase (class I PurE). In animals, the conversion of AIR to CAIR requires a single enzyme, AIR carboxylase (class II PurE). The CAIR carboxylate derives from bicarbonate or CO(2), respectively. Class I PurE is a promising antimicrobial target. Class I and class II PurEs are mechanistically related but bind different substrates. The spirochete dental pathogen Treponema denticola lacks a purK gene and contains a class II purE gene, the hallmarks of CO(2)-dependent CAIR synthesis. We demonstrate that T. denticola PurE (TdPurE) is AIR carboxylase, the first example of a prokaryotic class II PurE. Steady-state and pre-steady-state experiments show that TdPurE binds AIR and CO(2) but not N(5)-CAIR. Crystal structures of TdPurE alone and in complex with AIR show a conformational change in the key active site His40 residue that is not observed for class I PurEs. A contact between the AIR phosphate and a differentially conserved residue (TdPurE Lys41) enforces different AIR conformations in each PurE class. As a consequence, the TdPurE·AIR complex contains a portal that appears to allow the CO(2) substrate to enter the active site. In the human pathogen T. denticola, purine biosynthesis should depend on available CO(2) levels. Because spirochetes lack carbonic anhydrase, the corresponding reduction in bicarbonate demand may confer a selective advantage.
从头合成嘌呤的过程由两条不同的途径进行。在细菌、酵母和植物中,5-氨基咪唑核糖核苷酸(AIR)通过两种酶转化为 4-羧基-AIR(CAIR):N(5)-羧基-AIR(N(5)-CAIR)合成酶(PurK)和 N(5)-CAIR 变位酶(I 类 PurE)。在动物中,AIR 转化为 CAIR 需要一种酶,即 AIR 羧化酶(II 类 PurE)。CAIR 羧酸盐分别来自碳酸氢盐或 CO2。I 类 PurE 是一种很有前途的抗菌药物靶点。I 类和 II 类 PurE 在机制上相关,但结合不同的底物。螺旋体齿状病原体密螺旋体(Treponema denticola)缺乏 purK 基因,而含有 II 类 purE 基因,这是 CO2 依赖性 CAIR 合成的标志。我们证明,T. denticola PurE(TdPurE)是 AIR 羧化酶,这是第一个原核 II 类 PurE 的例子。稳态和预稳态实验表明,TdPurE 结合 AIR 和 CO2,但不结合 N(5)-CAIR。TdPurE 单独和与 AIR 结合的晶体结构显示,关键活性位点 His40 残基发生构象变化,而 I 类 PurE 则没有观察到这种变化。AIR 磷酸盐与一个差异保守残基(TdPurE Lys41)之间的接触在每个 PurE 类中强制不同的 AIR 构象。因此,TdPurE·AIR 复合物包含一个似乎允许 CO2 底物进入活性位点的门户。在人类病原体 T. denticola 中,嘌呤生物合成应该取决于可用的 CO2 水平。由于螺旋体缺乏碳酸酐酶,碳酸氢盐需求的相应减少可能赋予了选择性优势。