Suppr超能文献

斑马鱼胚胎早期卵裂阶段细胞骨架的实时成像。

Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos.

作者信息

Wühr M, Obholzer N D, Megason S G, Detrich H W, Mitchison T J

机构信息

Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Methods Cell Biol. 2011;101:1-18. doi: 10.1016/B978-0-12-387036-0.00001-3.

Abstract

The large and transparent cells of cleavage-stage zebrafish embryos provide unique opportunities to study cell division and cytoskeletal dynamics in very large animal cells. Here, we summarize recent progress, from our laboratories and others, on live imaging of the microtubule and actin cytoskeletons during zebrafish embryonic cleavage. First, we present simple protocols for extending the breeding competence of zebrafish mating ensembles throughout the day, which ensures a steady supply of embryos in early cleavage, and for mounting these embryos for imaging. Second, we describe a transgenic zebrafish line [Tg(bactin2:HsENSCONSIN17-282-3xEGFP)hm1] that expresses the green fluorescent protein (GFP)-labeled microtubule-binding part of ensconsin (EMTB-3GFP). We demonstrate that the microtubule-based structures of the early cell cycles can be imaged live, with single microtubule resolution and with high contrast, in this line. Microtubules are much more easily visualized using this tagged binding protein rather than directly labeled tubulin (injected Alexa-647-labeled tubulin), presumably due to lower background from probe molecules not attached to microtubules. Third, we illustrate live imaging of the actin cytoskeleton by injection of the actin-binding fragment of utrophin fused to GFP. Fourth, we compare epifluorescence-, spinning-disc-, laser-scanning-, and two-photon-microscopic modalities for live imaging of the microtubule cytoskeleton in early embryos of our EMTB-3GFP-expressing transgenic line. Finally, we discuss future applications and extensions of our methods.

摘要

斑马鱼胚胎卵裂期的大型透明细胞为研究非常大的动物细胞中的细胞分裂和细胞骨架动力学提供了独特的机会。在这里,我们总结了我们实验室和其他实验室在斑马鱼胚胎卵裂过程中对微管和肌动蛋白细胞骨架进行实时成像的最新进展。首先,我们介绍了一些简单的方案,用于延长斑马鱼交配群体全天的繁殖能力,这确保了早期卵裂期胚胎的稳定供应,并介绍了如何固定这些胚胎进行成像。其次,我们描述了一种转基因斑马鱼品系[Tg(bactin2:HsENSCONSIN17 - 282 - 3xEGFP)hm1],它表达带有绿色荧光蛋白(GFP)标记的ensconsin微管结合部分(EMTB - 3GFP)。我们证明,在这个品系中,可以以单个微管分辨率和高对比度对早期细胞周期中基于微管的结构进行实时成像。使用这种标记的结合蛋白比直接标记微管蛋白(注射Alexa - 647标记的微管蛋白)更容易观察到微管,这可能是由于未附着在微管上的探针分子产生的背景较低。第三,我们通过注射与GFP融合的抗肌萎缩蛋白的肌动蛋白结合片段来说明肌动蛋白细胞骨架的实时成像。第四,我们比较了落射荧光显微镜、转盘显微镜、激光扫描显微镜和双光子显微镜等成像方式,用于对我们表达EMTB - 3GFP的转基因品系早期胚胎中的微管细胞骨架进行实时成像。最后,我们讨论了我们方法的未来应用和扩展。

相似文献

1
Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos.
Methods Cell Biol. 2011;101:1-18. doi: 10.1016/B978-0-12-387036-0.00001-3.
2
Rapid dynamics of the microtubule binding of ensconsin in vivo.
J Cell Sci. 2001 Nov;114(Pt 21):3885-97. doi: 10.1242/jcs.114.21.3885.
3
Progesterone modulates microtubule dynamics and epiboly progression during zebrafish gastrulation.
Dev Biol. 2018 Feb 15;434(2):249-266. doi: 10.1016/j.ydbio.2017.12.016. Epub 2017 Dec 26.
4
Methods for Visualization of RNA and Cytoskeletal Elements in the Early Zebrafish Embryo.
Methods Mol Biol. 2021;2218:219-244. doi: 10.1007/978-1-0716-0970-5_18.
6
Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis.
Development. 2015 Aug 1;142(15):2704-18. doi: 10.1242/dev.119800. Epub 2015 Jul 9.
8
A transgenic zebrafish for monitoring in vivo microtubule structures.
Dev Dyn. 2010 Oct;239(10):2695-9. doi: 10.1002/dvdy.22400.
9
Zebrafish lines expressing UAS-driven red probes for monitoring cytoskeletal dynamics.
Genesis. 2016 Sep;54(9):483-9. doi: 10.1002/dvg.22955. Epub 2016 Jul 26.

引用本文的文献

2
Cytoplasmic flow is a cell size sensor that scales anaphase.
Nat Cell Biol. 2025 Feb;27(2):273-282. doi: 10.1038/s41556-024-01605-6. Epub 2025 Jan 31.
5
Tools to Image Germplasm Dynamics During Early Zebrafish Development.
Front Cell Dev Biol. 2021 Aug 13;9:712503. doi: 10.3389/fcell.2021.712503. eCollection 2021.
6
Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale.
Front Cell Dev Biol. 2021 May 25;9:642235. doi: 10.3389/fcell.2021.642235. eCollection 2021.
7
Cytokinetic abscission is part of the midblastula transition in early zebrafish embryogenesis.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2021210118.
8
Microtubule-actin crosslinking factor 1 (Macf1) domain function in Balbiani body dissociation and nuclear positioning.
PLoS Genet. 2017 Sep 7;13(9):e1006983. doi: 10.1371/journal.pgen.1006983. eCollection 2017 Sep.
9
10
Tau-based fluorescent protein fusions to visualize microtubules.
Cytoskeleton (Hoboken). 2017 Jun;74(6):221-232. doi: 10.1002/cm.21368. Epub 2017 May 22.

本文引用的文献

1
A model for cleavage plane determination in early amphibian and fish embryos.
Curr Biol. 2010 Nov 23;20(22):2040-5. doi: 10.1016/j.cub.2010.10.024. Epub 2010 Nov 4.
2
A transgenic zebrafish for monitoring in vivo microtubule structures.
Dev Dyn. 2010 Oct;239(10):2695-9. doi: 10.1002/dvdy.22400.
4
Action at a distance during cytokinesis.
J Cell Biol. 2009 Dec 14;187(6):831-45. doi: 10.1083/jcb.200907090.
7
8
Compression regulates mitotic spindle length by a mechanochemical switch at the poles.
Curr Biol. 2009 Jul 14;19(13):1086-95. doi: 10.1016/j.cub.2009.05.056. Epub 2009 Jun 18.
9
Characterization and in vitro control of MPF activity in zebrafish eggs.
Zebrafish. 2009 Mar;6(1):97-105. doi: 10.1089/zeb.2008.0527.
10
A bright and photostable photoconvertible fluorescent protein.
Nat Methods. 2009 Feb;6(2):131-3. doi: 10.1038/nmeth.1296. Epub 2009 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验