Suppr超能文献

以皮克数量级分辨率追踪单个颗石藻的溶解及其对二氧化碳封存和海洋酸化的影响。

Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification.

机构信息

Department of Chemistry, Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Proc Natl Acad Sci U S A. 2011 May 24;108(21):8571-6. doi: 10.1073/pnas.1009447108. Epub 2011 May 6.

Abstract

Coccoliths are micrometer scale shields made from 20 to 60 individual calcite (CaCO(3)) crystals that are produced by some species of algae. Currently, coccoliths serve as an important sink in the global carbon cycle, but decreasing ocean pH challenges their stability. Chalk deposits, the fossil remains of ancient algae, have remained remarkably unchanged by diagenesis, the process that converts sediment to rock. Even after 60 million years, the fossil coccolith crystals are still tiny (< 1 μm), compared with inorganically produced calcite, where one day old crystals can be 10 times larger, which raises the question if the biogenic nature of coccolith calcite gives it different properties than inorganic calcite? And if so, can these properties protect coccoliths in CO(2) challenged oceans? Here we describe a new method for tracking dissolution of individual specimens, at picogram (10(-12) g) resolution. The results show that the behavior of modern and fossil coccoliths is similar and both are more stable than inorganic calcite. Organic material associated with the biogenic calcite provides the explanation. However, ancient and modern coccoliths, that resist dissolution in Ca-free artificial seawater at pH > 8, all dissolve when pH is 7.8 or lower. Ocean pH is predicted to fall below 7.8 by the year 2100, in response to rising CO(2) levels. Our results imply that at these conditions the advantages offered by the biogenic nature of calcite will disappear putting coccoliths on algae and in the calcareous bottom sediments at risk.

摘要

球石是由 20 到 60 个单独的方解石(CaCO(3))晶体组成的微米级盾牌,由一些藻类物种产生。目前,球石是全球碳循环中的一个重要汇,但海洋 pH 值的降低挑战了它们的稳定性。白垩沉积物是古代藻类的化石遗迹,经过成岩作用(将沉积物转化为岩石的过程)后仍然保持着惊人的不变。即使经过 6000 万年,化石球石晶体仍然很小(<1μm),与无机方解石相比,一天大的晶体可以大 10 倍,这就提出了一个问题,即球石方解石的生物成因是否赋予了它与无机方解石不同的性质?如果是这样,这些特性是否能保护球石免受 CO(2)挑战的海洋的影响?在这里,我们描述了一种新的方法,可以在皮克微克(10(-12)g)分辨率下跟踪单个标本的溶解情况。结果表明,现代和化石球石的行为相似,两者都比无机方解石更稳定。与生物成因方解石相关的有机物质提供了答案。然而,在 pH 值大于 8 的无钙人工海水中抵抗溶解的古代和现代球石,当 pH 值为 7.8 或更低时都会溶解。预计到 2100 年,海洋 pH 值将下降到 7.8 以下,以应对 CO(2)水平的上升。我们的研究结果表明,在这些条件下,方解石的生物成因所带来的优势将消失,这使得球石及其所在的藻类和钙质底泥处于危险之中。

相似文献

引用本文的文献

2
Single Calcite Particle Dissolution Kinetics: Revealing the Influence of Mass Transport.单个方解石颗粒的溶解动力学:揭示传质的影响
ACS Meas Sci Au. 2022 Jul 12;2(5):422-429. doi: 10.1021/acsmeasuresciau.2c00025. eCollection 2022 Oct 19.
7
The mutual interplay between calcification and coccolithovirus infection.钙化作用与颗石藻病毒感染之间的相互作用。
Environ Microbiol. 2019 Jun;21(6):1896-1915. doi: 10.1111/1462-2920.14362. Epub 2018 Sep 18.

本文引用的文献

2
Phytoplankton calcification in a high-CO2 world.高二氧化碳环境下的浮游植物钙化作用
Science. 2008 Apr 18;320(5874):336-40. doi: 10.1126/science.1154122.
4
The oceanic sink for anthropogenic CO2.人为二氧化碳的海洋汇
Science. 2004 Jul 16;305(5682):367-71. doi: 10.1126/science.1097403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验