Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, 20133 Milano, Italy.
Science. 2010 Jul 23;329(5990):428-32. doi: 10.1126/science.1188886.
Ocean acidification induced by atmospheric CO2 may be a major threat to marine ecosystems, particularly to calcareous nannoplankton. We show that, during the Aptian (approximately 120 million years ago) Oceanic Anoxic Event 1a, which resulted from a massive addition of volcanic CO2, the morphological features of calcareous nannofossils traced the biological response to acidified surface waters. We observe the demise of heavily calcified nannoconids and reduced calcite paleofluxes at the beginning of a pre-anoxia calcification crisis. Ephemeral coccolith dwarfism and malformation represent species-specific adjustments to survive lower pH, whereas later, abundance peaks indicate intermittent alkalinity recovery. Deepwater acidification occurred with a delay of 25,000 to 30,000 years. After the dissolution climax, nannoplankton and carbonate recovery developed over approximately 160,000 years under persisting global dysoxia-anoxia.
大气 CO2 引起的海洋酸化可能是海洋生态系统的主要威胁,特别是对钙质超微化石。我们表明,在白垩纪(约 1.2 亿年前)大洋缺氧事件 1a 期间,大量火山 CO2 的释放导致了海洋酸化,钙质超微化石的形态特征反映了对酸化表层水的生物响应。我们观察到在缺氧前钙化危机开始时,高度钙化的颗石藻和减少的方解石古通量的消亡。短暂的球石藻侏儒症和畸形代表了物种特异性的调整,以在更低的 pH 值下生存,而后来的丰度峰值则表明间歇性的碱度恢复。深海酸化的发生滞后了 25000 到 30000 年。在溶解高峰期之后,在持续的全球贫氧-缺氧条件下,约 16 万年的时间里,颗石藻和碳酸盐的恢复得以发展。