Suppr超能文献

SclR是一种碱性螺旋-环-螺旋转录因子,可调节米曲霉的菌丝形态并促进菌核形成。

SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

作者信息

Jin Feng Jie, Takahashi Tadashi, Matsushima Ken-ichiro, Hara Seiichi, Shinohara Yasutomo, Maruyama Jun-ichi, Kitamoto Katsuhiko, Koyama Yasuji

机构信息

Noda Institute for Scientific Research, 399 Noda, Noda City, Japan.

出版信息

Eukaryot Cell. 2011 Jul;10(7):945-55. doi: 10.1128/EC.00013-11. Epub 2011 May 6.

Abstract

Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

摘要

大多数已知的碱性区域螺旋-环-螺旋(bHLH)蛋白属于一个转录因子超家族,常参与生长和分化的调控。因此,编码bHLH蛋白的基因表达异常常常与发育功能障碍相关。在我们之前报道的研究中,鉴定出了米曲霉的一个新的编码bHLH蛋白的基因(AO090011000215)。相对于亲本菌株,发现该基因敲除菌株产生密集的分生孢子,但菌核稀疏。在此,为了进一步分析其功能,我们使用米曲霉amyB基因启动子构建了一个过表达菌株。基因过表达导致大量初始菌丝聚集,随后形成成熟菌核;因此将其命名为sclR(菌核调节因子)。同时,sclR过表达菌株的分生孢子形成也出现延迟且数量减少。扫描电子显微镜显示,sclR过表达菌株的气生菌丝极度分支且相互缠绕。在构建SclR-增强绿色荧光蛋白(EGFP)表达菌株时,在细胞核中可检测到SclR-EGFP蛋白融合体。此外,在糊精-蛋白胨-酵母提取物液体培养基中,sclR功能缺失导致蛋白质快速降解和细胞裂解。综上所述,这些观察结果表明,SclR在菌丝形态、无性分生孢子形成以及菌核产生的促进过程中发挥重要作用,至少在深层液体培养中能维持正常细胞功能。

相似文献

7
Function analysis of steA homolog in Aspergillus oryzae.米曲霉中steA同源物的功能分析
Fungal Genet Biol. 2007 May;44(5):330-8. doi: 10.1016/j.fgb.2006.10.009. Epub 2006 Dec 18.

引用本文的文献

2
Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives.丝状真菌的形态工程:研究进展与展望。
J Microbiol Biotechnol. 2024 Jun 28;34(6):1197-1205. doi: 10.4014/jmb.2402.02007. Epub 2024 Mar 26.
4
The phenomenon of strain degeneration in biotechnologically relevant fungi.生物技术相关真菌中的菌株退化现象。
Appl Microbiol Biotechnol. 2023 Aug;107(15):4745-4758. doi: 10.1007/s00253-023-12615-z. Epub 2023 Jun 21.
10
New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology.转录调控因子 AflR 在黄曲霉生理中的新见解。
Microbiol Spectr. 2022 Feb 23;10(1):e0079121. doi: 10.1128/spectrum.00791-21. Epub 2022 Jan 26.

本文引用的文献

6
Genomics of Aspergillus oryzae.米曲霉的基因组学
Biosci Biotechnol Biochem. 2007 Mar;71(3):646-70. doi: 10.1271/bbb.60550. Epub 2007 Mar 7.
7
Function analysis of steA homolog in Aspergillus oryzae.米曲霉中steA同源物的功能分析
Fungal Genet Biol. 2007 May;44(5):330-8. doi: 10.1016/j.fgb.2006.10.009. Epub 2006 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验