State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China.
Dalton Trans. 2011 Jul 7;40(25):6635-44. doi: 10.1039/c1dt10274e. Epub 2011 May 6.
In this work, fullerene modified TiO(2) nanocomposites (denoted as C(60)/TiO(2)) with low C(60) loadings (0-1.5 wt.%) have been prepared by a simple hydrothermal method using tetrabutylorthotitanate (TBOT, Ti(OC(4)H(9))(4)) as the titanium precursor. The as-prepared C(60)/TiO(2) nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectrophotometry, nitrogen adsorption, and X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy. The formation of hydroxyl radicals (˙OH) on the surface of UV-illuminated TiO(2) is probed by photoluminescence using terephthalic acid as a probe molecule. Our results have demonstrated that C(60) molecules can be dispersed as a monolayer onto bimodal mesoporous TiO(2)via covalent bonding. The photocatalytic oxidation rate of gas-phase acetone over C(60)/TiO(2) nanocomposites is greater than that over pure TiO(2), commercial Degussa P25 (P25) and C(60)-TiO(2) counterparts prepared by simple impregnating mixing. In particular, 0.5 wt.% C(60)/TiO(2) nanocomposites show the greatest photocatalytic activity with the rate constant k exceeding that of P25 by a factor of 3.3. Based on the results of the current study, we propose that C(60) molecules doped onto TiO(2) act as "electron acceptors" responsible for the efficient separation of photogenerated charge carriers and the enhancement of photocatalytic activity. The proposed mechanism for the observed photocatalytic performance of C(60)/TiO(2) nanocomposites is further corroborated by experiments on hydroxyl radical and transient photocurrent response.
在这项工作中,通过简单的水热法,使用钛酸四丁酯(TBOT,Ti(OC(4)H(9))(4))作为钛前驱体,制备了负载量低(0-1.5wt%)的富勒烯修饰的 TiO(2)纳米复合材料(表示为 C(60)/TiO(2))。所制备的 C(60)/TiO(2)纳米复合材料通过 X 射线衍射、透射电子显微镜、紫外-可见分光光度法、氮气吸附、X 射线光电子能谱、傅里叶变换红外光谱、拉曼光谱进行了表征。使用对苯二甲酸作为探针分子通过光致发光探测 UV 照射下 TiO(2)表面羟基自由基(˙OH)的形成。我们的结果表明,C(60)分子可以通过共价键分散在双峰介孔 TiO(2)上作为单层。气相丙酮在 C(60)/TiO(2)纳米复合材料上的光催化氧化速率大于纯 TiO(2)、商业 Degussa P25(P25)和通过简单浸渍混合制备的 C(60)-TiO(2)对应物。特别是,0.5wt%的 C(60)/TiO(2)纳米复合材料表现出最大的光催化活性,其速率常数 k 超过 P25 的 3.3 倍。根据目前的研究结果,我们提出掺杂在 TiO(2)上的 C(60)分子充当“电子受体”,负责有效分离光生载流子并提高光催化活性。通过羟基自由基和瞬态光电流响应实验进一步证实了所观察到的 C(60)/TiO(2)纳米复合材料光催化性能的机理。