Department of Pharmaceutical Bioscience, Drug Safety and Toxicology, Uppsala University, Uppsala, Sweden.
Anal Bioanal Chem. 2011 Jul;401(1):135-47. doi: 10.1007/s00216-011-5043-y. Epub 2011 May 7.
The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different stimulations. Glial cells were separated into pure astroglial, microglial, and oligodendroglial cell cultures. The intact cell suspensions were then analyzed directly by MALDI-TOF-MS, resulting in characteristic mass spectra profiles that discriminated glial cell types using principal component analysis. Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of different cell types with molecular specificity.
发展强大的分析技术,对神经细胞类型进行特定的分子特征分析,是神经科学研究的核心内容,有助于阐明中枢神经系统(CNS)中的细胞功能。本研究使用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)直接分析方法,研究了哺乳动物神经细胞的差异蛋白表达谱。MALDI-MS 分析快速、灵敏、稳健,特异性强,可用于分析复杂基质中的大生物分子。在此,我们描述了一种新开发的、简单的方法,用于使用基于 MALDI-MS 的完整细胞质谱(ICMS)直接对啮齿动物中枢神经系统神经胶质细胞进行特征描述。这种分子表型分析方法可用于监测细胞生长阶段、(干细胞)分化,以及探测细胞对不同刺激的反应。将神经胶质细胞分离为纯星形胶质细胞、小胶质细胞和少突胶质细胞培养物。然后将完整细胞悬浮液直接通过 MALDI-TOF-MS 进行分析,得到的特征质谱谱图可通过主成分分析区分神经胶质细胞类型。补充蛋白质组学实验揭示了这些特征蛋白的身份,这些蛋白主要在不同的神经胶质细胞类型中表达,包括少突胶质细胞中的组蛋白 H4 和星形胶质细胞中的 S100-A10。进行了 MALDI 成像 MS 分析,并将特征质量用作分子示踪剂,用于预测脑组织中少突胶质细胞和星形胶质细胞的定位。使用免疫组织化学验证了组织中不同细胞类型特异性蛋白分布。完整神经胶质细胞的 ICMS 是一种简单、直接的方法,可用于对不同细胞类型进行特征描述和区分,具有分子特异性。