Suppr超能文献

使用自组织映射 (SOMs) 评估同步性:应用于历史桉树开花记录。

Using Self-Organising Maps (SOMs) to assess synchronies: an application to historical eucalypt flowering records.

机构信息

School of Mathematical & Physical Sciences, University of Newcastle, Callaghan, Newcastle, NSW, Australia.

出版信息

Int J Biometeorol. 2011 Nov;55(6):879-904. doi: 10.1007/s00484-011-0427-4. Epub 2011 May 8.

Abstract

Self-Organising Map (SOM) clustering methods applied to the monthly and seasonal averaged flowering intensity records of eight Eucalypt species are shown to successfully quantify, visualise and model synchronisation of multivariate time series. The SOM algorithm converts complex, nonlinear relationships between high-dimensional data into simple networks and a map based on the most likely patterns in the multiplicity of time series that it trains. Monthly- and seasonal-based SOMs identified three synchronous species groups (clusters): E. camaldulensis, E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; and E. leucoxylon, E. tricarpa. The main factor in synchronisation (clustering) appears to be the season in which flowering commences. SOMs also identified the asynchronous relationship among the eight species. Hence, the likelihood of the production, or not, of hybrids between sympatric species is also identified. The SOM pattern-based correlation values mirror earlier synchrony statistics gleaned from Moran correlations obtained from the raw flowering records. Synchronisation of flowering is shown to be a complex mechanism that incorporates all the flowering characteristics: flowering duration, timing of peak flowering, of start and finishing of flowering, as well as possibly specific climate drivers for flowering. SOMs can accommodate for all this complexity and we advocate their use by phenologists and ecologists as a powerful, accessible and interpretable tool for visualisation and clustering of multivariate time series and for synchrony studies.

摘要

自组织映射 (SOM) 聚类方法应用于八种桉树物种的月度和季节性平均开花强度记录,成功地量化、可视化和模拟了多变量时间序列的同步。SOM 算法将高维数据之间复杂的非线性关系转换为简单的网络和基于其训练的多个时间序列中最可能模式的地图。基于月度和季节性的 SOM 确定了三个同步物种群(聚类):Eucalyptus camaldulensis、Eucalyptus melliodora、Eucalyptus polyanthemos;Eucalyptus goniocalyx、Eucalyptus microcarpa、Eucalyptus macrorhyncha;和 Eucalyptus leucoxylon、Eucalyptus tricarpa。同步(聚类)的主要因素似乎是开花开始的季节。SOM 还确定了八种物种之间的异步关系。因此,也确定了同域物种之间产生或不产生杂种的可能性。基于 SOM 模式的相关值反映了从原始开花记录中获得的 Moran 相关性得出的早期同步统计数据。开花的同步是一个复杂的机制,它包含所有的开花特征:开花持续时间、开花高峰期的时间、开花开始和结束的时间,以及可能特定的开花气候驱动因素。SOM 可以适应所有这些复杂性,我们提倡将其作为一种强大、易于使用和可解释的工具,供物候学家和生态学家用于可视化和聚类多变量时间序列以及同步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验