Suppr超能文献

利用物种出现记录的日期来预测生态现象的时间:以蘑菇为例的方法学方法和案例研究。

Predicting the timing of ecological phenomena using dates of species occurrence records: a methodological approach and test case with mushrooms.

机构信息

CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, 4485-661, Porto, Portugal.

CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.

出版信息

Int J Biometeorol. 2019 Aug;63(8):1015-1024. doi: 10.1007/s00484-019-01714-0. Epub 2019 Apr 18.

Abstract

Spatiotemporal predictions of ecological phenomena are highly useful and significant in scientific and socio-economic applications. However, the inadequate availability of ecological time-series data often impedes the development of statistical predictions. On the other hand, considerable amounts of temporally discrete biological records (commonly known as 'species occurrence records') are being stored in public databases, and often include the location and date of the observation. In this paper, we describe an approach to develop spatiotemporal predictions based on the dates and locations found in species occurrence records. The approach is based on 'time-series classification', a field of machine learning, and consists of applying a machine-learning algorithm to classify between time series representing the environmental variation that precedes the occurrence records and time series representing the full range of environmental variation that is available in the location of the records. We exemplify the application of the approach for predicting the timing of emergence of fruiting bodies of two mushroom species (Boletus edulis and Macrolepiota procera) in Europe, from 2009 to 2015. Predictions made from this approach were superior to those provided by a 'null' model representing the average seasonality of the species. Given the increased availability and information contained in species occurrence records, particularly those supplemented with photographs, the range of environmental events that could be possible to predict using this approach is vast.

摘要

生态现象的时空预测在科学和社会经济应用中具有高度的实用性和重要性。然而,生态时间序列数据的不足往往阻碍了统计预测的发展。另一方面,大量离散的生物记录(通常称为“物种出现记录”)被存储在公共数据库中,并且通常包括观察的位置和日期。在本文中,我们描述了一种基于物种出现记录中发现的日期和位置来进行时空预测的方法。该方法基于“时间序列分类”,这是机器学习的一个领域,包括应用机器学习算法来区分代表出现记录之前环境变化的时间序列和代表记录位置中可用的全范围环境变化的时间序列。我们举例说明了该方法在预测欧洲两种蘑菇物种(Boletus edulis 和 Macrolepiota procera)的果实体出现时间方面的应用,时间范围为 2009 年至 2015 年。与代表物种平均季节性的“空”模型相比,该方法提供的预测更为准确。鉴于物种出现记录的可用性增加以及其中包含的信息,特别是那些附有照片的记录,使用这种方法可以预测的环境事件范围非常广泛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验