Suppr超能文献

基于物理的蛋白-配体相互作用评分:显式极化率、量子力学和自由能。

Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

机构信息

School of Pharmacy & Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M139PT, UK.

出版信息

Future Med Chem. 2011 Apr;3(6):683-98. doi: 10.4155/fmc.11.30.

Abstract

The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

摘要

准确预测配体与其受体相互作用的能力是计算机辅助药物设计方法(如虚拟筛选和从头设计)的一个关键限制。在本文中,我们研究了基于物理方法的蛋白质配体亲和力评分策略,以及力场和量子化学技术的最新发展。我们还考虑了基于模拟的自由能方法在研究蛋白质-配体相互作用中的发展和应用的进展。最近在计算算法和硬件方面的进展为在计算指导的药物发现的早期阶段增加基于物理的评分方法的集成提供了机会。具体来说,我们预计将更多地使用隐式溶剂模型和基于模拟的评分方法作为计算大型虚拟配体库亲和力的工具。基于终点模拟和参考势的方法允许将更先进的势能函数应用于预测蛋白质-配体结合亲和力。需要对极化力场和量子力学(QM)/分子力学和 QM 方法在蛋白质-配体相互作用评分中的应用进行全面评估,特别是在解决金属蛋白和其他形成高度极性相互作用的挑战性靶标方面的能力。最后,我们预计将越来越多的定量自由能微扰和热力学积分方法,这些方法对于从筛选的配体库中获得的命中进行优化是实用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验