School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia.
Phys Chem Chem Phys. 2011 Jun 21;13(23):11045-54. doi: 10.1039/c1cp20447e. Epub 2011 May 9.
Fluorescence resonance energy transfer (FRET) is commonly used to determine the proximity of fluorophores, but usually many assumptions are required to gain a quantitative relationship between the likelihood of energy transfer and fluorophore separation. Molecular Dynamics (MD) simulations provide one way of checking these assumptions, but before using simulations to study complex systems it is important to make sure that they can correctly model the motions of fluorophores and the likely FRET efficiency in a simple system. Here we simulate a well characterised situation of independent fluorophores in solution so that we can compare the predictions with expected values. Our simulations reproduce the experimental fluorescence anisotropy of Alexafluor488 and predict that of AlexaFluor568. At the ensemble level we are able to reproduce the expected isotropic and dynamic motion of the fluorophores as well as the FRET efficiency of the system. At the level of single donor-acceptor pairs, however, very long simulations are required to adequately sample the translational motion of the fluorophores and more surprisingly also the rotational motion. Our studies demonstrate how MD simulations can be used in more complex systems to check if the dynamic orientation averaging regime applies, if the fluorophores have isotropic orientational motion, to calculate the likely values of the orientation factor κ(2) and to determine the FRET efficiency of the system in both dynamic and static orientational averaging regimes. We also show that it is possible in some situations to create system specific relationships between FRET efficiency and fluorophore separation that can be used to interpret experimental data and find any correlations between κ(2) and separation that may influence distance measurements.
荧光共振能量转移(FRET)通常用于确定荧光团的接近程度,但通常需要许多假设才能获得能量转移的可能性与荧光团分离之间的定量关系。分子动力学(MD)模拟提供了一种检查这些假设的方法,但在使用模拟研究复杂系统之前,重要的是要确保它们可以正确模拟荧光团的运动和简单系统中可能的 FRET 效率。在这里,我们模拟了一个特征明显的独立荧光团在溶液中的情况,以便我们可以将预测值与预期值进行比较。我们的模拟再现了 Alexafluor488 的实验荧光各向异性,并预测了 AlexaFluor568 的荧光各向异性。在整体水平上,我们能够再现荧光团的预期各向同性和动态运动以及系统的 FRET 效率。然而,在单个供体-受体对的水平上,需要进行非常长的模拟才能充分采样荧光团的平移运动,更令人惊讶的是,还需要进行旋转运动的充分采样。我们的研究表明,MD 模拟如何可以在更复杂的系统中使用,以检查动态取向平均化规则是否适用,如果荧光团具有各向同性取向运动,以计算取向因子 κ(2)的可能值,并确定系统在动态和静态取向平均化规则下的 FRET 效率。我们还表明,在某些情况下,有可能创建特定于系统的 FRET 效率与荧光团分离之间的关系,这些关系可用于解释实验数据并发现 κ(2)与可能影响距离测量的分离之间的任何相关性。